HYDRAULIC MOTORS

INDEX

HYDRAULIC MOTORS

- MOTOR TYPE OM

OM-01 - OM-10

- MOTOR TYPE OP

OP-01 - OP-17

- MOTOR TYPE OP..NA

OP..NA-01 - OP..NA-03

- MOTOR TYPE OZ

OZ-01 - OZ-02

- MOTOR TYPE OR

OR-01 - OR-17

- MOTOR TYPE OK

OK-01 - OK-02

- MOTOR TYPE OPL
- MOTOR TYPE ORL
............................. ORL-01-ORL-05
- MOTOR TYPE ORS
$\ldots .$. ORS-01-ORS-02
- MOTOR TYPE OH
$\mathrm{OH}-01$ - OH-07
- MOTOR TYPE OS

OS-01 - OS-22

- MOTOR TYPE OSY

OSY-01 - OSY-08

- MOTOR TYPE OT
- MOTOR TYPE OTM
- MOTOR TYPE OV
- MOTOR TYPE ORB

OT-01 -OT-13
OTM-01 - OTM-05
OV-01 - OV-11
ORB-01 - ORB-02

APPLICATION SPECIFICATION AND GENERAL INFORMATION

General-01 - General-02

HYDRAULIC MOTORS

The operating principle of the motors is based on an internal gear design, consisting of a stator and rotor through which the output torque and speed are transmitted. The distributor valve is driven synchronously by the rotor through a cardan shaft ensuring that each one of the chambers of the motor are filled and emptied precisely.

SPOOL VALVE-The distributor valve has been integrated with the output shaft. The valve has hydrodynamic bearings, and has infinite life when load ratings are not exceeded. OM, OP, OPL, OR, ORL and OH motors have a Spool Valve.

DISC VALVE's function is to distribute fluid to the Roller Gear Set. The pressure balanced sealing surface on the valve face and the separately driven maintains minimal leakage and mechanical losses. These gives the motors high efficiency - even at high pressures, and good starting characteristics.

GEAR SET- There are two forms of stator, hence and of gear set:
OM, OP and OPL have plain teeth. These types motors are suitable for long operating periods at moderate pressures - or short operating periods at high pressures.
$\mathrm{OR}, \mathrm{ORL}$ and OH have teeth fitted with rollers. The rollers reduce local stress and the tangential reaction forces on the rotor reducing friction to a minimum. This gives long operating life and better efficiency even at continuous high pressures. Roller Gear Sets are recommended for operation with thin oil and for applications having continually reversing loads.
OS, OT and OV are suitable for continuous operation under rough operating conditions - high pressures, thin oil, or frequentreversals. The Tapered roller bearings permit high radial loads.

Standard Motor The standard motor mounting flange is located as close to the output shaft as possible. This type of mounting supports the motor close to the shaft load. This mounting flange is also compatible with many standard gear boxes.

Wheel Motor This type mounting flange makes the motor possible to fit a wheel hub or a winch drum so that the radial load acts midway between the two motor bearings. This gives the best utilization of the bearing capacity and is a very compact solution.

Needle Bearing OP and OR have an output shaf supported in needle bearing. These types motors are suitable for absorbing static and dynamic radial loads.

Short Motor This motor is assembled without the output shaft, beanings and bearing housing and has the same drive components as the standard and wheel motors. The short motor is especially suited for applications such as gear boxes, winch, reel and roll drives. Short motor applications must be designed with a bearing supported internal spline to mate with the bearing less motor drive. Product designs using these hydraulicmotors provide considerable cost savings.

Low Leakage

LL Series hydraulic motors have been designed to operate at the whole standard range of working conditions (pressure drop and frequency of rotation), but with considerable decreased volumetric losses in the drainage ports. Their main purpose is to operate as series-connected motors in hydraulic systems. For this version is permissible decreasing of the maximal torque with up to 5% (at middle speed) and up to 10% (at high speed) in comparison to the standard versions of motors.

Low Speed LSV Series hydraulic motors have been designed to operate with normal pressure drop and to ensure Valve smooth run at low speed (up to 200 min), as the best security for operation is guaranteed at frequency of rotation $20 \div 50 \mathrm{~min}_{-1}$. They have an increased starting pressure drop and are not recommended for using at pressure less than 40 bar.

FR Series hydraulic motors have been designed to operate with high frequencies of rotation (over than $300 \mathrm{~min}^{-1}$) and low pressure drop. These motors are produced with increased clearance at all friction parts.
Additional advantages of "FR" version are prolonging of the life of the hydraulic motors at high frequencies of rotation, as well as the possibility to use them in systems with big variation of the loading. Volumetric efficiency can be affected.

HYDRAULIC MOTORS OM

APPLICATION
"Conveyors;
" Textile machines;
" Mining machinery;
" Machine tools;
" Ventilators;
"Construction plant equipment and access platforms etc.

CONTENTS

Specification data \qquad .OM-02
Function diagrams OM-03+05
Dimensions and mounting ... OM-06
Shaft extensions OM-07
Permissible shaft loadsOM-07
Order codeOM-10

OPTIONS

» Model - Spool valve, gerotor;

* With or without flange;
n Side and rear ports;
* Series with pressure valve(s)
» Shafts - straight and splined;
" Metric and BSPP ports;
* Other special features.

GENERAL

Displacement,	$\left[\mathrm{cm}^{3} / \mathrm{rev}\right]$	
Max. Speed,	$[\mathrm{RPM}]$	$8,2 \div 50$
Max. Torque,	$[\mathrm{daNm}]$	$1950 \div 400$
Max. Output,	$[\mathrm{kW}]$	$1,1 \div 4,5$
Max. Pressure Drop,	$[\mathrm{bar}]$	$1,8 \div 2,4$
Max. Oil Flow,	$[\mathrm{l} / \mathrm{min}]$	$100 \div 70$
Min. Speed,	$[\mathrm{RPM}]$	$16 \div 20$
Pressure fluid		
Temperature range,	$\left[{ }^{\circ} \mathrm{C}\right]$	
Optimal Viscosity range, $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$		
Filtration		Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)

OMP Series with Integrated Internal Crossover Relief Valve
$A \longrightarrow B, \Delta p=100$ bar (50 bar)

OMP Series with Integrated Internal Crossover Relief Valve $B \longrightarrow A, \Delta p=100$ bar (50 bar)

OMD Series with Integrated Internal Crossover Relief Valves $A \leftrightarrow B, \Delta p=100$ bar (50 bar)

SPECIFICATION DATA

Type		$\begin{gathered} \text { OM } \\ 8 \end{gathered}$	$\begin{array}{r} \text { OM } \\ 12,5 \end{array}$	$\begin{aligned} & \text { OM } \\ & 20 \end{aligned}$	$\begin{aligned} & \text { OM } \\ & 32 \end{aligned}$	$\begin{gathered} \text { OM } \\ 40 \end{gathered}$	$\begin{array}{r} \text { OM } \\ 50 \end{array}$
Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}.\right]$		8,2	12,9	20	31,8	40	50
Max. Speed, [RPM]	cont.	1950	1550	1000	630	500	400
	int.*	2440	1940	1250	790	625	500
Max. Torque [daNm]	cont.	1,1	1,6	2,5	4	4.1	4,5
	int.*	1,5	2,3	3,5	5,7	5,7	5,8
	peak ${ }^{\star}$	2,1	3,3	5,1	6,4	6,6	8
Max. Output [kW]	cont.	1,8	2,4	2,4	2,4	1,8	1.7
	int.*	2,6	3,2	3,2	3,2	3,0	2,1
Max. Pressure Drop [bar]	cont,	100	100	100	100	80	70
	int. *	140	140	140	140	110	90
	peak**	200	200	200	200	140	125
Max. Oil Flow [l/min]	cont	16	20	20	20	20	20
	int.*	20	25	25	25	25	25
Max. Inlet Pressure, [bar]	cont.	140	140	140	140	140	140
	int.*	175	175	175	175	175	175
	peak**	225	225	225	225	225	225
Max. Return Pressure w/o Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	140	140	140	140	140	140
	cont. 100-400 RPM	100	100	100	100	100	100
	cont. 400-800 RPM	50	50	50	50	50	-
	cont. >800 RPM	20	20	20	-	-	-
	int.* 0-max. RPM	140	140	140	140	140	140
Max. Return Pressure with Drain Line [bar]	cont.	140	140	140	140	140	140
	int. *	175	175	175	175	175	175
	peak**	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shift, [bar]		4	4	4	4	4	4
Min. Starting Torque [daNm]	at max. press. drop cont.	0,7	1,2	2,1	3,4	3,3	3.7
	at max. press. drop int.*	1,0	1,7	2,9	4,8	4,6	4,8
Min. Speed ${ }^{* * *}$, [RPM]		50	40	30	30	25	20
Weight, avg. [kg]	OM	1,9	2	2,1	2,2	2,3	2,5
	OMF(S)	2,3	2,4	2,5	2,6	2,7	2,9
	OMFS	2,7	2,8	2,9	3,0	3,1	3,3
	OMP	2,5	2,6	2,7	2,8	2,9	3,1
	OMPF	2,7	2,8	2,9	3,0	3,1	3,3
	OMD	2,6	2,7	2,8	2,9	3,0	3,2
	OMDF	2,8	2,9	3,0	3,1	3,2	3,4

[^0]
FUNCTION DIAGRAMS

OM 8

OM12,5

The function diagrams data was collected at back pressure $5 \div 10$ bar
and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OM 20

OM 32

The function diagrams data was collected at back pressure $5 \div 10 \mathrm{bar}$ and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OM 40

OM 50

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

DIMENSIONS AND MOUNTING DATA

Type	L,mm	Type	L,mm	Type	L,mm	Type	L,mm	$L_{1}, \mathrm{~mm}$
OM 8	104	OMS 8	105	OMP 8	115	OMD 8	134	3,5
OM 12,5	106	OMS 12,5	107	OMP 12,5	117	OMD 12,5	136	5,5
OM $\mathbf{2 0}$	109	OMS 20	110	OMP 20	120	OMD 20	139	8,5
OM	$\mathbf{3 2}$	114	OMS 32	115	OMP 32	125	OMD 32	144
OM	$\mathbf{4 0}$	117,5	OMS 40	118,5	OMP 40	128,5	OMD 40	147,5
OM	$\mathbf{5 0}$	121,5	OMS 50	122,5	OMP 50	132,5	OMD 50	151,5
21								

SHAFT EXTENSIONS

C - $\propto 16$ straight, Parallel key $5 \times 5 \times 16$ DIN 6885
Max. Torque 3,9 daNm

SH - 016,5 Splined, B17x14 DIN 5482 Max. Torque 4,4 daNm

∇ - Motor Mounting Surface

* For F Mounting

PERMISSIBLE SHAFT LOAD

The permissible radial shaft load [Prad] is calculated from the distance [L] between the point of load application and the mounting surface:

$$
P_{\mathrm{rad}}=\frac{13040}{(61,5+\mathrm{L})},[\mathrm{daN}]
$$

[Lin mm; L<80]

The drawing shows the permissible radial load when $\mathrm{L}=20 \mathrm{~mm}$.

If the calculated shaft load exceeds the permissible, a flexible coupling must be used.

Hydraulic motors with speed sensor type OM...RS

Fer Hydraulic is introducing hydraulic motor with a new generation of speed sensor. The electric output signal is a standard voltage signal that can be used for regulating the speed of a motor.

The speed is measured by a sensor in accordance with the Hall principle. Signal processing and amplification are performed in the sensor housing. A connection is provided in the housing by a Plug connector M12 Series.

This performance is applicable for all motors of OM series. The main technical features correspond to the standard motors series OM.

DIFFERENTIAL HALL SENSOR

Technical data

Frequency range Output
Power supply
Current input
Current load
Ambient Temperature
Protection
Plug connector
Mounting principle
Pulses per revolution
3.. 20000 Hz PNP 10... 36 VDC 20 mA (@24 VDC) $500 \mathrm{~mA}\left(@ 24 \mathrm{VDC} ; 24^{\circ} \mathrm{C}\right)$ minus 40 ... plus $125^{\circ} \mathrm{C}$ IP 67 M12-Series ISO 6149 30

Output signal

Load max. $. I_{\text {nigh }}=I_{\text {biw }}<50 \mathrm{~mA}$
No load current, max: 20 mA

Wiring diagram

PNP

NPN

Stik type

Terminal No.	Connection
1	U_{dc}
2	No connection
$\mathbf{3}$	OV
4	Output signal

ORDER CODE

Pos. 1-Adjustment Option

omit - without valve

- Side ports with single crossover relief valve Side ports with dual crossover relief valve

Pos. 2 - Mounting Flange

omit - Tree bolts mount
F -oval mount, two holes
Pos.3. Port type (not valid for P and D version)
omit - Rear ports
S - Side ports

Pos.4-Displacement code

$\mathbf{8}$	$-8,2\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 , 5}$	$-12,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0}$	$-20,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 2}$	$-31,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0}$	$-40,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{5 0}$	$-50,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos. 5-Shaft Extensions*

\qquad

- $\varnothing 16$ straight Parallel key $5 \times 5 \times 16$ DIN 6885 ø16 straight Parallel key $5 \times 5 \times 16$ DIN 6885 with corrosion resistant bushing
\qquad
SH - $\varnothing 16,5$ splined, B17×14 DIN 5482
Pos. 6- Ports

omit - BSPP (ISO 228)
\mathbf{M}

Pos. 7 - Line to controled ** (see page OM - 01)	
L	$-\mathrm{B} \rightarrow \mathrm{A}$ (left running)
R	$-\mathrm{A} \rightarrow \mathrm{B}$ (right running)

Pos. 8 - Valve Rated Pressure ***

$150-\Delta p=50$ bar
$/ 100-\Delta p=100$ bar

Pos. 9. Speed Monitoring

omit - none

RS-P - with speed sensor (PNP pull-down resistor)
RS-N - with speed sensor (NPN pull-up resistor)
Pos. 10 - Rotation

omit	- Standard Rotation
R	-Reverse Rotation
Pos.11	- Option (Paint)
omit	- no paint
P	- Painted
PC	- Corrosion Protected Paint

Pos. 12 - Design Series
omit - Factory specified

NOTES:

* The permissible output torque for shafts must be not exceeded!
* For "P" option useful only.
** For "P" and"D" option useful only.
$* * *$ Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard,

HYDRAULIC MOTORS OP

APPLICATION

" Conveyors;
» Feeding mechanism of robots and manipulators;
> Metal working machines;
» Textile machines;
» Machines for agriculture;
» Food industries;

* Grass cutting machinery etc.

CONTENTS
Specification dataOP-02 $\div 04$
Function diagramsOP-05 $\div 09$
Dimensions and mounting OP-10
Wheel motor OP-11
Shaft extensions OP-12
Permissible shaft loads OP-13
Order code OP-17

OPTIONS

» Model-Spool valve, gerotor;

* Flange and wheel mount;
* Motor with needle bearing
* Side and rear ports;
» Shafts- straight, splined and tapered;
*Shaft seal for high and low pressure;
» Metric and BSPP ports;
* Other special features.

GENERAL

Displacement,	$\left[\mathrm{cm}^{3} / \mathrm{rev}.\right]$	$25 \div 623,6$
Max. Speed,	$[\mathrm{RPM}]$	$1600 \div 95$
Max. Torque,	$[\mathrm{daNm}]$	$3,3 \div 50$
Max. Output,	$[\mathrm{kW}]$	$3,3 \div 10,5$
Max. Pressure Drop,	$[\mathrm{bar}]$	$140 \div 55$
Max. Oil Flow,	$[1 / \mathrm{min}]$	$40 \div 60$
Min. Speed,	$[\mathrm{RPM}]$	
Pressure fluid		Mineral based- HLP
Temperature range,	$\left[{ }^{\circ} \mathrm{C}\right]$	
Optimal Viscosity range, $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$		$-30 \div 90$
Filtration		1SO code 20/16 (Min. recommended fluid filtration of 25 micron)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathbf{m m}^{\mathbf{2}} / \mathbf{s}\right)$	Oil flow in drain line $\left(1 / \mathbf{m i n}^{2}\right.$
	20	2,5
	35	1,8
140	20	3,5
	35	2,8

Pressure Losses

SPECIFICATION DATA

Type		$\begin{array}{r} \text { OP } \\ 25 \end{array}$	$\begin{array}{r} \mathrm{OP} \\ 32 \end{array}$	$\begin{array}{r} \text { OP } \\ 40 \end{array}$	$\begin{gathered} O P(W) \\ 50 \end{gathered}$	OP 50...B	$\begin{gathered} O P(W) \\ 80 \end{gathered}$	$\begin{gathered} \text { OP } \\ 80 \ldots \mathrm{~B} . . \end{gathered}$	$\begin{gathered} O P(W) \\ 100 \end{gathered}$	$\begin{array}{\|c\|\|} \hline \text { OP } \\ 100 \ldots B . . \end{array}$
Displacement[cm3/hev.]		25	32,0	40,0	49,5	49,5	79,2	79,2	99	99
Max. Speed, [RPM]	cont.	1600	1560	1500	1210	1210	755	755	605	605
	int.*	1800	1720	1750	1515	1515	945	945	755	755
Max. Torque, [daNm]	cont.	3,3	4,3	6,2	9,4	9.4	15,1	15,1	19,3	19,3
	int.*	4,7	6,1	8,2	11,9	11,9	19,5	19,5	23,7	23,7
	peak**	6,7	8,6	10,7	14,3	14,3	22,4	22,4	27,5	27,5
Max. Qutput, [kW]	cont.	4,5	5,8	8,4	10,1	10,1	10,2	10,2	10,5	10,5
	int.*	6,1	7,8	11,6	12,2	12,2	12,5	12,5	12,8	12,8
Max. Pressure Drop, [bar]	cornt.	100	100	120	140	140	140	140	140	140
	int.*	140	140	155	175	175	175	175	175	175
	peak ${ }^{\text {H/ }}$	225	225	225	225	225	225	225	225	225
Nax. Cil Flow, [lpm]	cont.	40	50	60	60	60	60	60	60	60
	int.*	45	55	70	75	75	75	75	75	75
Max. Inlet Pressure, [bar]	cont.	175	175	175	175	175	175	175	175	175
	int.*	200	200	200	200	200	200	200	200	200
	peak ${ }^{\text {"* }}$	225	225	225	225	225	225	225	225	225
Max. Return Pressure w/o Drain Line or Max. Pressure in Drain Line, [bar]	cont. $0-100 \mathrm{RPM}$	150	150	150	150	100	150	100	150	100
	cont. 100-300 RPM	75	75	75	75	30	75	30	75	30
	cont. 300-600 RPM	50	50	50	50	15	50	15	50	15
	cont. >600 RPM	20	20	20	20	-	20	-	20	-
	int.* 0-max RPM	150	150	150	150	100	150	100	150	100
Max. Return Pressure with Drain Line, [bar]	cornt.	175	175	175	175	175	175	175	175	175
	int.*	200	200	200	200	200	200	200	200	200
	peak ${ }^{\text {* }}$	225	225	225	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft [bar]		10	10	10	10	10	10	10	10	10
Min. Starting Torque [daNm]	at max. press. crop cont.	3	4	5.4	7,8	7,8	13,2	13,2	16,6	16,6
	at max. press. drop int.*	4.2	5,6	6.9	10	10	16,8	16,8	21	21
Min. Speed [RPM]		20	15	10	10	10	10	10	10	10
Weight [kg]	OPF	5,6	5,6	5,7	5,8		5,9		6,1	
	OP(F)(E)..B...					5,9 (6,4)		$6(6,5)$		6,2 (6,7)
	OPQ(N)				5,2		5,3		5,5	
	$\mathrm{OP}(\mathrm{F})(\mathrm{N}) \mathrm{E}$				6,3		6,4		6,6	
	OPW(N)				5,5		5,6		5,8	
	OPG(N)E				5,7		5,8		6,0	

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
** Peak load: the permissible values may occur for max. 1% of every minute.
${ }^{* *}$ For speeds of 10 RPM or lower, consult factory or your regional manager.

1. Intermittent speed and intermittent pressure drop must not occur simultaneously.
2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials.
4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5. Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

SPECIFICATION DATA (continued)

Type		$\begin{aligned} & \text { OP } 125 \\ & \text { OPW } 125 \end{aligned}$	$\begin{gathered} O P \\ 125 \ldots \mathrm{~B} . . \end{gathered}$	$\begin{aligned} & \text { OP } 160 \\ & \text { OPW } 160 \end{aligned}$	$\begin{gathered} O P \\ 160 \ldots B . . . \end{gathered}$	$\begin{array}{r} \text { OP } 200 \\ \text { OPW } 200 \end{array}$	$\begin{gathered} \text { OP } \\ 200 \ldots B \ldots \end{gathered}$
Displacement, [cm $\left.{ }^{3} / \mathrm{rev}.\right]$		123,8	123,8	158,4	158,4	198	198
Max. Speed, [RPM]	cont.	486	486	378	378	303	303
	int.*	605	605	472	472	378	378
Max. Torque [daNm]	cont.	23,7	23,7	31,3	31,3	36,6	36,6
	int.*	29,8	29,8	37,8	37,8	45,6	45,6
	peak**	36,5	36,5	43,8	43,8	55	55
Max. Output, [kW]	cont.	10	10	10,1	10, 1	10	10
	int.*	12	12	12,1	12,1	12	12
Max. Pressure Drop [bar]	cont.	140	140	140	140	140	140
	int.*	175	175	175	175	175	175
	peak ${ }^{*}$	225	225	225	225	225	225
Max. Oil Flow [l/min]	cont.	60	60	60	60	60	60
	int.*	75	75	75	75	75	75
Max. Inlet Pressure [bar]	cont.	175	175	175	175	175	175
	int.*	200	200	200	200	200	200
	peak ${ }^{* *}$	225	225	225	225	225	225
Max. Retum Pressure w/o Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	150	100	150	100	150	100
	cont. 100-300 RPM	75	30	75	30	75	30
	cont. 300-600 RPM	50	15	50	15	50	15
	cont. >600 RPM	-	-	-	-	-	-
	int.* 0 -max. RPM	150	100	150	100	150	100
Max. Retum Pressure with Drain Line [bar]	cont.	175	175	175	175	175	175
	int.*	200	200	200	200	200	200
	peak**	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]		9	9	8	8	7	7
Min. Starting Torque [daNm]	at max. press drop cont.	20,7	20,7	28,2	28,2	33,5	33,5
	at max. press. drop int.*	26,6	26,6	35,5	35,5	42,6	42,6
Min. Speed***, [RPM]		10	10	10	10	10	10
Weight, avg. [kg]	OPF	6,2		6,4		6,6	
	OP(F)(E)... B...		6,3(6,8)		$6,5(6,9)$		6,7(7,2)
	OPQ(N)	5,6		5,8		6,0	
	OP(F)(N)E	6,7		6,9		7,1	
	OPW(N)	5,9		6,1		6,3	
	OPQ(N)E	6,1		6,3		6,5	

[^1]
SPECIFICATION DATA (continued)

Type		$\begin{aligned} & \text { OP(M) } \\ & 250 \end{aligned}$	$\begin{gathered} O P \\ 250 \ldots B . . \end{gathered}$	$\begin{gathered} \text { OP(W) } \\ 315 \end{gathered}$	$\begin{gathered} \text { OP } \\ 315 \ldots \mathrm{~B} . . . \end{gathered}$	$\begin{aligned} & O P(W) \\ & 400 \end{aligned}$	$\begin{gathered} O P \\ 400 \ldots B . . . \end{gathered}$	$\begin{aligned} & \text { OP } \\ & 500 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 630 \end{aligned}$
Displacement, [$\left.\mathrm{cm}^{3} / \mathrm{rev}.\right]$		247,5	247,5	316,8	316,8	396	396	495	623,6
Max. Speed, [RPM]	cont.	242	242	190	190	150	150	120	95
	int.*	303	303	236	236	189	189	150	120
Max. Torque [daNm]	cont.	38	47	38	48,6	36	50	39	44
	int.*	58,3	58,3	56	56	59	59	57	64
	peak**	68,5	68,5	85	85	85,4	85,4	78	82
Max. Output, [kW]	cont.	7,5	9,5	5,7	7.6	4,6	6,2	3,5	3,3
	int. *	12	12	9	9	7,8	7,8	7,2	5,6
Max. Pressure Drop [bar]	cont.	110	140	90	120	70	95	60	55
	int.*	175	175	140	140	115	115	90	80
	peak**	225	225	225	225	180	180	130	110
Max. Oil Flow [I/min]	cont.	60	60	60	60	60	60	60	60
	int.*	75	75	75	75	75	75	75	75
Max. Inlet Pressure [bar]	cont.	175	175	175	175	175	175	140	140
	int.*	200	200	200	200	200	200	175	175
	peak**	225	225	225	225	225	225	225	225
Max. Return Pressure w/o Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	150	100	150	100	150	100	150	150
	cont. 100-300 RPM	75	30	75	30	75	30	75	-
	cont. 300-600 RPM	.	-	.	-	.	-	-	\cdot
	cont. >600 RPM	-	-	-	-	-	-	-	-
	int.* 0-max. RPM	150	100	150	100	150	100	150	150
Max. Return Pressure with Drain Line [bar]	cont.	175	175	175	175	175	175	140	140
	int.*	200	200	200	200	200	200	175	175
	peak**	225	225	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]		6	6	5	5	5	5	5	5
Min. Starting Torque [daNm]	at max. press drop cont.	33,6	42,8	34,4	45,8	34,5	46,8	36	41,5
	at max. press. drop int.*	54,2	54,2	61,9	61,9	60,8	60,8	54	62
Min. Speed***, [RPM]		10	10	10	10	10	10	10	10
Weight, avg. [kg]	OPF	6,8		7,1		7,6		8,9	9,5
	OP(F)(E)... B...		6,9(7,4)		7,2(7,7)		$7,7(8,2)$		
	OPQ(N)	6,2		6,5		6,8		8,3	9,0
	OP(F)(N)E	7,3		7,6		8,1		9,3	10
	OPW(N)	6,5		6,8		7,2			
	OPQ(N)E	6,7		7,0		7,3		8,8	8,5

[^2]
SPECIFICATION DATA for OP...LSV

Low Speed Valve (LSV) "LSV" Series hydraulic motors have been designed to operate with normal pressure drop and to ensure smooth run at low speed (up to 200 RPM), as the best security for operation is guaranteed at frequency of rotation $20 \div 50$ RPM . They have an increased starting pressure drop and are not recommended for using at pressure less than 40 bar.
Look at specification data for hydraulic motors standard version. The modification concerns only the following parameters: maximum speed, maximum output,maximum Oil flow and maximum starting pressure.

Type		$\begin{aligned} & \mathrm{OP} \\ & 25 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 32 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 40 \end{aligned}$	$\begin{aligned} & \hline \mathrm{OP} \\ & 50 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 80 \end{aligned}$	$\begin{gathered} \mathrm{OP} \\ 100 \end{gathered}$	$\begin{aligned} & \text { OP } \\ & 125 \end{aligned}$	$\begin{gathered} \text { OP } \\ 160 \end{gathered}$	$\begin{aligned} & \mathrm{OP} \\ & 200 \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & 250 \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & 315 \end{aligned}$	$\begin{gathered} \mathrm{OP} \\ 400 \end{gathered}$	$\begin{aligned} & \hline \mathrm{OP} \\ & 500 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 630 \end{aligned}$
Max. Speed	Cont.	200	200	200	200	200	200	200	200	200	200	190	150	80	64
[RPM]	Int.*	250	250	250	250	250	250	250	250	250	250	236	190	101	80
Max. Output	Cont.	0,7	0,9	1,2	2,0	3	3,8	4,9	6,1	7.0	5,2	4,2	3,4	2.9	2.6
[kW]	Int.*	1,2	1,5	2,0	3,2	5	6,0	7,2	9,5	9,8	9,1	7,2	6,0	5,0	4,2
Max. Oil Flow	Cont.	9,0	11,0	11	15	22	24	30	34	40	40	40	40	40.	40
[lpm]	Int.*	13,5	16,5	14	20	29	33	38	46	50	50	50	50	50	50
Max. Starting Pressure with unloaded Shaft, [bar]		25	25	25	20	20	20	20	15	15	15	12	12	10	10

SPECIFICATION DATA for OP...LL

Low Leakage (LL) "LL" Series hydraulic motors have been designed to operate at the whole standard range of working conditions (pressure drop and frequency of rotation), but with considerable decreased volumetric losses in the drainage ports. Their main purposeis to operateas series-connected motors in hydraulic systems.

For this version is permissible decreasing of the maximal torque with up to 5% (at middle speed) and up to 10% (at high speed) in comparison to the standard versions of motors.

Look at specification data for hydraulic motors series OP standard version. The modification concerns only the parameters: maximum torque, maximum output, minimum starting torque.

Type		$\begin{aligned} & \mathrm{OP} \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & 50 \end{aligned}$	OP 80	$\begin{aligned} & \text { OP } \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{OP} \\ & 125 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 160 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 200 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 250 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 315 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 400 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 500 \end{aligned}$	$\begin{aligned} & \text { OP } \\ & 630 \end{aligned}$
Max. Torqu	Cont.	3,1	4.1	5.8	9,0	14,4	18,4	22,5	29,8	34.8	44,6	46,2	47,5	38	42,8
[daNm]	Int.*	4,3	5,8	7,8	11,3	18,5	22,5	28,3	36,0	43,3	55,A	53,2	56,0	55	62,0
Max. Output	Cont.	4,3	5,6	8,2	10	10,1	10,4	9.9	10	9,9	9,4	7.5	6,1	3,4	3,2
[KW]	Int. ${ }^{\text {* }}$	6,0	7,7	11,5	12	12,3	12,6	11,8	12	11,8	11,8	8,9	7,7	7,1	5,5
Max. Pressure Drop	Cont.	100	100	120	140	140	140	140	140	140	140	120	95	60	55
[bar]	Int.*	140	140	155	175	175	175	175	175	175	175	140	115	90	80
Min. Starting Torque	Cont.	4,5	57	6,8	7.4	12,5	15,8	19,6	26,8	31,8	40,7	43,5	44,5	46	50
[daNm]	Int.*	6,0	7,0	8,0	9,5	16,0	20,0	25,2	33,7	40,5	51,5	58,8	57,8	52	60

SPECIFICATION DATA for OP...FR

Free Running version "FR" these are the hydraulic motors with reduced mechanical losses, for wich at disengaged condition (unconnected with driving mechanism) the rotation of the shaft could be realized by means of small torque. This advantage is especially usefull at operating with high frequencies of rotation (over than $300 \mathrm{~min}^{-1}$) and low pressure drop, which is inbred for types with displacements of up to $200 \mathrm{~cm}_{3}$. It is normal for these for the different condition of operation to have high torque, as well as high volume losses: the values of the volumetric efficiency are lower (up to 5% for middle and up to 10% for high values of the pressure drop), than these of the normal versions. That's why the recommended operatingfor "FR version is for applications with pressure drop up to 100 bar.

Additional advantages of "FR" version are prolonging of the life of the hydraulic motors at high frequencies of rotation, as well as the possibility to use them in systems with big variation of the loading.

Look at specification data for hydraulic motors series OP standard version. Only the parameter Starting Pressure is modified.

Type	OP 25	OP 32	OP 40	OP 50	OP 80	OP 100	OP 125	OP 160	OP 200
Max. Starting Pressure with Unloaded Shaft, [bar]	8	8	8	8	8	8	7,5	6,5	5,5

FUNCTION DIAGRAMS

OP 25

FUNCTION DIAGRAMS

OP 50

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OP 80

OP 100

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OP 125

OP 160

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OP 200

OP 250

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAM

OP 315

OP 400

The function diagram data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAM

OP 500

OP 630

The function diagram data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

DIMENSIONS AND MOUNTING DATA

Mounting

Oval Mount (2 Holes)

E -RearPorts

C : $4 \times \mathrm{M} 8-13 \mathrm{~mm}$ depth
$\mathbf{P}_{(A, B)}: 2 \times G 1 / 2$ or $2 \times M 22 \times 1,5-15 \mathrm{~mm}$ depth
T : G1/4 or M14x1,5-12mm depth (plugged)

Standard Rotation
Viewed from Shaft End
Port A Pressurized-CW
Port B Pressurized-CCW

Reverse Rotation

Viewed from Shaft End Port A Pressurized-CCW Pat B Pressurized-CW

Type	L, mm	Type	L. mm	Type	L. mm	Type	L, mm	$\mathrm{L}_{1}, \mathrm{~mm}$
OPF 25	133,2	OPG 25	139,4	OP(F)E 25	151,2	OPQE 25	157,4	4,60
OPF 32	134,5	OPQ 32	140,7	OP(F)E 32	152,5	OPQE 32	158,7	5,90
OPF 40	135,2	OPQ 40	141,4	OP(F)E 40	153,2	OPQE 40	159,4	7,40
OPF 50	135,6	OPQ 50	141,8	OP(F)E 50	155,8	OPQE 50	162,0	6,67
OPF 80	139,6	OPQ 80	145,8	OP(F)E 80	159,8	OPQE 80	166,0	10,67
OPF 100	142,2	OPQ 100	148,4	OP(F)E 100	162,4	OPQE 100	168,6	13,33
OPF 125	145,6	OPQ 125	151,8	OP(F)E 125	165,8	OPQE 125	172,0	16,67
OPF 160	150,2	OPQ 160	156,4	OP(F)E 160	170,4	OPQE 160	176,6	21,33
OPF 200	155,6	OPQ 200	161,8	OP(F)E 200	175,8	OPQE 200	182,0	26,67
OPF 250	162,2	OPQ 250	168,4	OP(F)E 250	182,4	OPQE 250	188,6	33,33
OPF 315	171,6	OPQ 315	177,8	OP(F)E 315	191,8	OPQE 315	198,0	42,67
OPF 400	182,2	OPQ 400	188,4	OP(F)E 400	202,4	OPQE 400	208,6	53,33
OPF 500	193,0	OPQ 500	199,0	OP(F)E 500	213,0	OPQE 500	219,0	66,63
OPF 630	210,5	OPQ 630	216,5	OP(F)E 630	230,5	OPQE 630	236,5	84,00

DIMENSIONS AND MOUNTING DATA - OPW

Standard Rotation
Viewed from Shaft End
Port A Pressurized-CW
Port B Pressurized-CCW

Reverse Rotation
Viewed from Shaft End Port A Pressurized-ccW
Port BPressurized-CW
$\mathbf{P}_{(A, B)}: 2 \times G 1 / 2$ or $2 \times M 22 \times 1,5-15 \mathrm{~mm}$ depth
T: G1/4 or M14×1,5-12 mm depth (plugged)

PERMISSIBLE SHAFT LOADS

C. -25 straight, Parallel key A8x7×32 DIN 6885 Max. Torque 44 da Nm

CO

- 01^{11} straight, Parallel key $1 / 4^{\prime \prime} \times 1 / 4^{\prime} \times 1 / 4^{\prime \prime} B S 46$ Max. Torque 44 daNm

SH-splined, BS 2059 (SAE 6B)
SH-splined, BS 2059 (SAE 6 B
Max. Torque 44 daNm

K-tapered 1;10, Parallel key B5 $\times 5 \times 14$ DIN 6885 Max. Torque 40 daNm

SA-splined, B25×22h9 DIN 5482 Max. Torque 40 daNm

CB - $\mathbf{2} 2 \mathrm{straight}$, Parallel key A10×8×45 DIN 6885 Max. Torque 77 daNm

SB - splined A25×22×H 10 DIN 5482
Max. Torque 44 da Nm

KB-tapered 1:10, Parallel key B6xóx 20 DIN 6885 Max. Torque 77 daNm

OB -tapered 1:8 SAEJ 501, Parallel key $5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 11^{1 / 4}$ BS46 Max. Torque 77 daNm

HB - ©1 $1 / 4^{\prime \prime}$ splined 14T, ANSI B92.1-1976 Norm Max. Torque 77 daNm

[^3]
PERMISSIBLE SHAFT LOADS FOR OP MOTORS

The permissible radial shaft load $P_{\text {rod }}$ depends on the speed (RPM) and distance (L) from the point of load to the mounting flange.

Mounting Flange			
Shaft Version	cylindrical - C, CO tapered - K, splined - SH	splined. HB cylindrical - CB	cylindrical - C, CO
Radial Shaft Load Prod	$\frac{800}{n} \times \frac{25000}{95+L}, d a N$	$\frac{800}{\mathrm{n}} \times \frac{18750}{95+\mathrm{L}}, \mathrm{daN}$	$\frac{800}{n} \times \frac{25000}{101+L}, d a N$

$\mathrm{n}<200 \mathrm{~min} ;$ max $P_{\mathrm{rad}}=800 \mathrm{daN}$
${ }^{*} n \geq 200 \mathrm{~min}^{-1} ; \mathrm{L}<55 \mathrm{~mm}$

OPN

OP

The curves apply to a B_{10} bearing life of 2000 hours.

Radial Shaft Load $\mathrm{P}_{\text {rad }}$ for C , CO Shaft Extensions by $\mathrm{L}=30(24) \mathrm{mm}$

HYDRAULIC MOTORS WTH SPEED SENSOR TYPE OP...RS

Fer Hydraulic is introducing hydraulic motor with a new generation of speed sensor, The electric output signal is a standard voltage signal that can be used for regulating the speed of a motor.

The speed is measured by a sensor in accordance with the Hall principle. Signal processing and amplification are performed in the sensor housing. A connection is provided in the housing by a Plug connector M12Series.

This performance is applicable for all motors of OP and OR series. The main technical features correspond to the standard motors series OP and OR.
For detail technical and mounting data please refer to Meta catalogue.

DIFFERENTIAL HALL SENSOR

Technical data

Frequency range Output Power supply Current input Current load Ambient Temperature Protection
Plug connector Mounting principle
3.. 20000 Hz PNP
10... 36 VDC

20 mA (@24 VDC)
$500 \mathrm{~mA}\left(@ 24 \mathrm{VDC} ; 24^{\circ} \mathrm{C}\right.$)
minus 40 ... plus $125^{\circ} \mathrm{C}$
IP 67
M12-Series
ISO 6149

Output signal

Wiring diagram

Stik type

Terminal No.	Connection
1	U $_{\text {d. }}$ (+supply)
2	No connection
3	U $_{\text {di } .}$ (-supply)
4	Output signal

ORDER CODE

Pos.1-Shaft Seal Version (see page OR-10)

omit - Low pressure seal or Seal for "...B" shaft
D - High pressure seal not for "...B" shaft
Pos.2-Case Drain

omit	- with drain port
\mathbf{U}	- without drain port

Pos. 3 - Mounting Flange
omit - Oval mount two holes

F	- Oval mount, four holes
\mathbf{Q}	- Square mount, four bolts
W	- Wheel mount

Pos.4- Option (needle bearings)
omit - none
N^{*}-with needle bearings

Pos. 5 - Port type

omit - Side ports
\square Rear ports
Pos.6- Displacement code

$\mathbf{2 5}$	$-25,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 2}^{*}$	$-32,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
40^{*}	$-40,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{5 0}$	$-49,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-79,2\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-123,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-158,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-198,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-247,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-316,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-396,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{5 0 0}$	$-495,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{6 3 0}$	$-623,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

NOTES:

* Only with "D" Shaft Seal Versions!
* The permissible output torque for shafts must be not exceeded The following combinations are not allowed- $\mathrm{Q}, \mathrm{W}, \mathrm{N}$ options with "... $\mathrm{B}^{\prime \prime}$ shafts
**Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

LOW SPEED HIGH TORQUE MOTORS OP.../NA

INTRODUCTION

Meta Hydraulic presents the new hydraulic motor OP.../NA, which is modification of the hydraulic motor type OP. Dimension and pressure range are same as OP hydraulic motor.
OP.../NA is suitable for driven mechanism where is demand smooth operation low speed and high pressure. It is designed with separated output shaft and spool valve and can be specified with low intemal leakage, thereby:

$>$ Good start-up characteristics;
$>$ Precise control of the Torque at low small flow.
$>$ Smooth operation at high pressure and small oil flow;
$>$ High volumetric efficiency.

APPLICATION

$>$ Actuator motor as driving-motor for steering mechanism of the the threewheel vehicles;
$>$ For conveyors (series connection);
$>$ Dosing motor etc.

$$
\begin{aligned}
& \text { at low small flow. } \\
& \text { ssure and small oil flow; }
\end{aligned}
$$

> Hydraulic

Reservoir

SPECIFICATION DATA

Code	Displa- cement [cm$/ \mathrm{rev}]$	Max. Speed [RPM]	Max. Torque [daNm]		Max. Output [kW]		Max. Pressure Drop [bar]		Max. Oil Flow [lpm]
		cont.	cont.	inf *	cont.	int *	cont.	int ${ }^{*}$	cont.
OP50/NA	49,5	200	9,4	11,9	1,5	2,0	140	175	10
OP80/NA	79,2	200	15,1	19,5	2,5	3,0	140	175	16
OP100/NA	99,0	200	19,3	23,7	4,0	4,5	140	175	20
OP125/NA	123,8	200	23,7	29,8	5,0	5,5	140	175	25
OP160/NA	158,4	200	26,4	37,8	4,5	5,5	120	175	32
OP200/NA	198,0	200	30,0	36,5	5,0	6,5	115	140	40
OP250/NA	247,5	200	33,0	40,5	5,5	6,0	100	125	50
OP315/NA	316,8	190	34,7	40,2	5,5	6,0	85	100	60
OP400/NA	396,0	15	33,5	41,0	4,5	6,0	65	80	60

*Intermittent operation: the permissible values may occur for max. 10% of every minute.

ORDER CODE

Pos. 7 - Displacement code

$\mathbf{5 0}$	$-49,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-79,2\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-123,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-158,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-198,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-247,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-316,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-398,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.2. Shaft Extensions*

SA - 624,5 splined B25×22h9 DIN 5482

Pos. 3 - Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)

| Pos. 4 - Rotation
 omit - Standard Rotation
 R - Reverse Rotation |
| :--- | :--- |

Pos. 5. Option (Paint) ${ }^{\text {te }}$
omit - no Paint

\mathbf{P}	- Painted
PC	- Corrosion Protected Paint

Pos. 6. Design Series

NA - Low speed, high pressure

NOTES:

* The permissible output torque for shafts must be not exceeded!
* Color at customer's request.

The hydraulic motors are mangano phosphatized as standard.

INTRODUCTION

OZ Series have a spool valve: the distribution valve is integrated in the output shaft. The cardan shaft thus rotates the distribution valve and transfers mechanical energy from the gerotor set to the output shaft.

SPECIFICATION DATA

Code	Displacement [$\mathrm{cm}^{3} / \mathrm{rev}$]	Max. Speed [RPMI]	Max. Torque [daNm]		Max. Output [kW]		Max. Pressure Drop [bar]		Max. Oil Flow [lpm]
		cont.	cont.	int*	cont.	int**	cont.	int*	cont.
OZ 50	49,5	808	7	9.2	5,2	8,6	105	140	40
OZ 80	79,2	505	10.8	14,6	5.2	8,6	105	140	40
OZ 100	99	404	14,4	18,3	5,2	8,6	105	140	40
OZ 125	123,8	232	17	22.9	5,2	8,6	105	140	40
OZ 160	158,4	252	22	29,3	5.2	8,6	105	140	40
OZ 200	198	202	27.5	36,6	5,2	8,6	105	140	40
OZ 250	247,5	160	30,1	37.6	4,6	7,0	90	115	40
OZ 315	316,8	126	31,7	44,0	3,4	5,8	70	105	40
OZ 400	369	100	40,8	55,6	3,4	5,8	70	105	40

* Intermittent operation: the permissible values may occur for max. 10% of every minute.

OUTLINE DIMENSIONS REFERENCE

C: $2 \times \mathrm{M} 8-13 \mathrm{mmdepth}$
$\mathbf{P}_{\langle A, B\rangle}: 2 \times G 1 / 2-15 \mathrm{~mm}$ depth
$\mathrm{T}: \mathrm{G1/4}-12 \mathrm{~mm}$ depth (plugged)

Standard Rotation

Viewed from Shaft End Port A Pressurized - CW Port B Pressurized - CCW

Type		L, mm	$\mathrm{L}_{1}, \mathrm{~mm}$
OZ	$\mathbf{5 0}$	102,5	6,67
OZ	80	106,5	10,67
OZ	100	109	13,33
OZ	125	112,5	16,67
OZ	160	117	21,33
OZ	200	122,5	26,67
OZ	250	129	33,33
OZ	300	138,5	42,67
OZ	400	149	53,33

SHAFT EXTENSIONS

ORDER CODE

Pos.1-Displacement

$\mathbf{5 0}$	$-49,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-79,2\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-123,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-158,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-198,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-247,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-316,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-398,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.2. Shaft Extensions*

C - $\varnothing 25$ straight, Parallel key A8×7×32 DIN6885
CO - $\varnothing 25$ straight, Parallel key $14^{1 /} \times 1 / 4^{\prime \prime} \times 11^{1 / 4}$ BS46
SH - $\varnothing 28,56$ splined BS 2059 (SAE 6B)
K - 28,56 tapered 1:10, Parallel key,
B5x5x14 DIN6885
SA - $\quad 28,56$ splined B25x22h9 DIN 5482

NOTES:

* The permissible output torque for shafts must be ** Color at customer's request. not exceeded!

APPLICATION

» Conveyors;
» Feeding mechanism of robots and manipulators;
» Metal working machines;
» Textile machines;
» Machines for agriculture;

* Food industries;
* Grass cutting machinery etc.

CONTENTS

Specification dataOR-02 $\div 05$
Function diagramsOR-06 $\div 10$
Permissible shaft Seal Pressure ... OR-10
Dimensions and mounting OR-11
Wheel motor OR-12
Shaft versions OR-13
Permissible shaft loads OR-14
Order code OR-17

OPTIONS

* Model-Spool valve, roll-gerotor;
" Flange and wheel mount;
* Motor with needle bearing;
* Side and rear ports;
*Shafts- straight, splined and tapered;
» Shaft seal for high and low pressure;
* Metric and BSPP ports;
* Other special features.

GENERAL

Displacement, [$\left.\mathrm{cm}^{3} / \mathrm{rev}.\right]$	$51,5 \div 397$
Max. Speed, [RPM]	$775 \div 150$
Max. Torque, [daNm]	$10,1 \div 61$
Max. Output, [kW]	$5 \div 13$
Max. Pressure Drop, [bar]	$175 \div 70$
Max. Oil Flow, [1/min]	$40 \div 60$
Min. Speed, [RPM]	10
Pressure fluid	Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)
Temperature range, $\left[{ }^{\circ} \mathrm{C}\right]$	$-30 \div 90$
Optimal Viscosity range, [$\left.\mathrm{mm}^{2} / \mathrm{s}\right]$	$20 \div 75$
Filtration	ISO code 20/16 (Min. recommended fluid filtration of 25 micron)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathbf{m m}^{2} / \mathbf{s}\right)$	Oil flow in drain line (I/ min)
100	20	2,5
	35	1,8
140	20	3,5
	35	2,8

SPECIFICATION DATA

Type		$\begin{aligned} & \hline \mathrm{OR} \\ & 50 \end{aligned}$	$\begin{aligned} & \text { ORW } 50 \\ & \text { OR } 50 \ldots \text {... } \end{aligned}$	$\begin{aligned} & \text { OR } \\ & 80 \end{aligned}$	ORW 80 OR 80...B	$\begin{aligned} & \text { OR } \\ & 100 \end{aligned}$	$\begin{aligned} & \text { ORW } 100 \\ & \text { OR } 100 \ldots \text {... } \end{aligned}$
Displacement, [$\mathrm{cm}^{3} / \mathrm{u}$]		51,5	51,5	80,3	80,3	99,8	99,8
Max. Speed, [RPM]	cont.	775	775	750	750	600	600
	int. ${ }^{\text {a }}$	970	970	940	940	750	750
Max. Torque [daNm]	cont.	10,1	10,1	19,5	19,5	24	24
	int.*	13	13	22	22	28	28
	peak ${ }^{\text {* }}$	17	17	27	27	32	32
Max, Output, [kW]	cont.	7	7	12,5	12,5	13	13
	int.*	8,5	8,5	15	15	15	15
Max. Pressure Drop [bar]	cont.	140	140	175	175	175	175
	int.*	175	175	200	200	200	200
	peak**	225	225	225	225	225	225
Max. Oil Flow [$1 / \mathrm{min}$]	cont.	40	40	60	60	60	60
	int.*	50	50	75	75	75	75
Max. Inlet Pressure [bar]	cont.	175	175	175	175	175	175
	int.*	200	200	200	200	200	200
	peak ${ }^{\text {* }}$	225	225	225	225	225	225
Max. Return Pressure wo Drain Line or max. Pressure in Drain Line, [bar]	cont.0-100 RPM	150	100	150	100	150	100
	cont. 100-300 RPM	75	30	75	30	75	30
	cont. $300-600$ RPM	50	15	50	15	50	15
	cont. >600 RPM	20	-	20	-	20	-
	int.* 0-max. RPM	150	100	150	100	150	100
Max. Return Pressure with Drain Line [bar]	cont.	175	175	175	175	175	175
	int.*	200	200	200	200	200	200
	peak ${ }^{\text {* }}$	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]		10	10	10	10	10	10
Min. Starting Torque [daNm]	at max. press. drop cont.	8	8	15	15	20	20
	at max. press. drop int.*	10	10	17	17	23	23
Min. Speed***, [RPM]		10	10	10	10	10	10
Weight, avg., [kg]	OR(F)	6,8	6,9	6,9	7,0	7,2	7,3
	ORW	-	10,4	-	10,5	-	10,6
	ORQ	6,2		6,3		6,6	

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
** Peak load: the permissible values may occur for max. 1% for every minute.
${ }^{* * 4}$ For speeds of 10 RPM or lower, consult factory or your regional manager.

1. Intermittent speed and intermittent pressure drop must not occur simultaneously!
2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4).

If using synthetic fuids consult the factory for altemative seal materials.
4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5. Recommended maximum system operating temperature $-82^{\circ} \mathrm{C}$.
6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 min.

SPECIFICATION DATA (continued)

Type		$\begin{aligned} & \text { OR } \\ & 125 \end{aligned}$	$\begin{aligned} & \text { ORW } 100 \\ & \text { OR 100...B } \end{aligned}$	$\begin{gathered} \text { OR } \\ 160 \end{gathered}$	ORW 160 OR 160...B	$\begin{aligned} & \text { OR } \\ & 200 \end{aligned}$	$\begin{aligned} & \text { ORW } 200 \\ & \text { OR } 200 \end{aligned}$
Displacement, [$\mathrm{cm}^{3} / \mathrm{u}$]		$125 ; 7$	125,7	159,6	159,6	199,8	199,8
Max. Speed, [RPM]	cont.	475	475	375	375	300	300
	int.*	600	600	470	470	375	375
Max. Torque [daNm]	cont.	30	30	39	39	38,5	45
	int.*	34	34	43	43	46	50
	peak ${ }^{* *}$	37	37	46	46	56	56
Max. Output, [kW]	cont.	12,5	12,5	11,5	11,5	9	11
	int.*	14,5	14,5	14	14	11,5	13
Max. Pressure Drop [bar]	cont.	175	175	175	175	140	175
	int.*	200	200	200	200	175	200
	peak**	225	225	225	225	225	225
Max. Oil Flow [I/min]	cont.	60	60	60	60	60	60
	int.*	75	75	75	75	75	75
Max. Inlet Pressure [bar]	cont.	175	175	175	175	175	175
	int. ${ }^{\text {a }}$	200	200	200	200	200	200
	peak**	225	225	225	225	225	225
Max. Return Pressure w/o Drain Line or max. Pressure in Drain Line, [bar]	cont.0-100 RPM	150	100	150	100	150	100
	cont. 100-300 RPM	75	30	75	30	75	30
	cont. $300-600$ RPM	50	15	50	15	50	15
	cont. >600 RPM	-	-		-	-	-
	int.* 0-max. RPM	150	100	150	100	150	100
Max. Return Pressure with Drain Line [bar]	cont.	175	175	175	175	175	175
	int.*	200	200	200	200	200	200
	peak**	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]		9	9	7	7	5	5
Min. Starting Torque [daNm]	at max. press. drop cont.	25	25	32	32	33	41
	at max. press. drop int.*	28	28	37	37	40	46
Min. Speed***, [RPM]		10	10	10	10	10	10
Weight, avg., [kg]	OR(F)	7.3	7,4	7,5	7.6	8	8,1
	ORW	-	10,8	-	11,1	-	11,6
	ORQ	6,8		7,6		7,2	

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
** Peak load: the permissible values may occur for max. 1% for every minute.
** For speeds of 10 RPM or lower, consult factory or your regional manager.

1. Intermittent speed and intermittent pressure drop must not occur simultaneously!
2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for altemative seal materials.
4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5. Recommended maximum system operating temperature $-82^{\circ} \mathrm{C}$.
6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for $10-15 \mathrm{~min}$.

SPECIFICATION DATA (continued)

Type		$\begin{aligned} & \hline \text { OR } \\ & 250 \end{aligned}$	$\begin{aligned} & \text { ORW } 250 \\ & \text { OR } 250 \ldots \text { B } \end{aligned}$	$\begin{aligned} & \hline \text { OR } \\ & 315 \end{aligned}$	$\begin{aligned} & \text { ORW } 315 \\ & \text { OR } 315 \ldots \text { B } \end{aligned}$	$\begin{aligned} & \text { OR } \\ & 400 \end{aligned}$	$\begin{aligned} & \text { ORW } 400 \\ & \text { OR } 400 \ldots B \end{aligned}$
Displacement, [$\mathrm{cm}^{3} / \mathrm{u}$]		250,1	250, 1	315,7	315,7	397	397
Max. Speed, [RPM]	cont.	240	240	190	190	150	150
	int. ${ }^{\text {a }}$	300	300	240	240	190	190
Max. Torque [daNm]	cont.	39	54	39	55	38	61
	int. *	58	61	57	63	60	69
	peak**	71	71	83	83	87	87
Max. Output, [kW]	cont.	6,5	10	6	9	4,8	7,8
	int. ${ }^{\text {a }}$	10,5	12	9,6	11	8,8	10,6
Max. Pressure Drop [bar]	cont.	110	175	90	135	70	115
	int.*	175	200	140	160	115	140
	peak ${ }^{* *}$	225	225	210	210	175	175
Max. Oil Flow [1/min]	cont.	60	60	60	60	60	60
	int. ${ }^{\text {a }}$	75	75	75	75	75	75
Max. Inlet Pressure [bar]	cont.	175	175	175	175	175	175
	int. ${ }^{\text {a }}$	200	200	200	200	200	200
	peak ${ }^{* *}$	225	225	225	225	225	225
Max. Return Pressure w/o Drain Line or max. Pressure in Drain Line, [bar]	cont.0-100 RPM	150	100	150	100	150	100
	cont. 100-300 RPM	75	30	75	30	75	30
	cont. 300-600 RPM	-	-	-	-		-
	int.* 0-max. RPM	150	100	150	100	150	100
Max. Return Pressure with Drain Line [bar]	cont.	175	175	175	175	175	175
	int.*	200	200	200	200	200	200
	peak**	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]		4	4	3	3	3	3
Min. Starting Torque [daNm]	at max. press. drop cont.	31	50	33	50	30	49
	at max. press. drop int.*	48	55	58	66	50	61
Min. Speed***, [RPM]		10	10	10	10	10	10
Weight, avg., [kg]	OR(F)	8,4	8,5	9,1	9,2	9.8	9.9
	ORW	-	12,1	-	12,6	-	13,3
	ORQ	7.8		8,6		9,3	

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
${ }^{* *}$ Peak load: the permissible values may occur for max. 1% for every minute.
*** For speeds of 10 RPM or lower, consult factory or your regional manager.

1. Intermittent speed and intermittent pressure drop must not occur simultaneously!
2. Recommended filtration is per ISO cleanliness code $20 / 16$. A nominal filtration of 25 micron or better.
3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4).

If using synthetic fluids consult the factory for alternative seal materials.
4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5. Recommended maximum system operating temperature $-82^{\circ} \mathrm{C}$.
6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 min.

SPECIFICATION DATA for OR...LSV

Low Speed Valve (LSV) "LSV" Series hydraulic motors have been designed to operate with normal pressure drop and to ensure smooth run at low speed (up to 200 RPM), as the best security for operation is guaranteed at frequency of rotation $20 \div 50$ RPM . They have an increased starting pressure drop and are not recommended for using at pressure less than 40 bar.
Look at specification data for hydraulic motors standard version. The modification concerns only the following parameters: maximum speed, maximum output,maximum Oil flow and maximum starting pressure.

Type		OR 50	OR 80	OR 100	OR 125	OR 160	OR 200	OR 250	OR 315	OR 400
Max. Speed [RPM]	Cont.	200	200	200	200	200	200	160	126	100
	Int.*	250	250	250	250	250	250	200	158	126
Max. Output [kW]	Cont.	2	4,0	5,0	6,2	7.0	6,8	6,2	5,8	5,2
	Int.*	3	5.7	7,3	8,5	8,8	8,3	7,8	7,6	6,8
Max. Oil Flow [Ipm]	Cont.	13	23	26	33	40	40	40	40	40
	Int.*	16	31	34	45	50	50	50	50	50
Max, Starting Pressure with unloaded Shaft, [bar]		20	20	20	20	15	15	15	12	12

SPECIFICATION DATA for OR...LL

Low Leakage (LL) "LL" Series hydraulic motors have been designed to operate at the whole standard range of working conditions (pressure drop and frequency of rotation), but with considerable decreased volumetric losses in the drainage ports. Their main purposeis to operateas series-connected motors in hydraulic systems.

For this version is permissible decreasing of the maximal torque with up to 5% (at middle speed) and up to 10\% (at high speed) in comparison to the standard versions of motors.

Look at specification data for hydraulic motors series OR standard version. The modification concerns only the parameters: maximum torque, maximum output, minimum starting torque.

Type		OR 50	OR 80	OR 100	OR 125	OR 160	OR 200	OR 250	OR 315	OR 400
Max. Torque [daNm]	Cont.	9.6	18.5	22,8	28,5	37,1	42,8	51,3	52,2	58,0
	Int. ${ }^{\text {. }}$	12,4	20,9	26,6	32,3	40,9	47,5	58,0	60,0	65,6
Max. Output [kW]	Cant.	9,0	12,3	12,8	12,4	11.4	10,9	9,9	8,9	7,7
	Int. ${ }^{\text {* }}$	11,9	14,8	14,8	14,3	13,8	12,8	11,8	10,9	10,5
Max, Pressure Drop [bar]	Cant.	140	175	175	175	175	175	175	135	115
	Int.*	175	200	200	200	200	200	200	160	140
Min. Starting Torque [daNm]	Cant.	7,6	14,2	19.0	23.8	30,4	39.0	47.5	47.5	46,5
	Int. ${ }^{\text {* }}$	9,5	16,2	21,8	26,6	35,2	43,7	52,2	62,7	58,0

SPECIFICATION DATA for OR...FR

Free Running version "FR" these are the hydraulic motors with reduced mechanical losses, for wich at disengaged condition / unconnected with driving mechanism / the rotation of the shaft could be realized by means of small torque. This advantage is especially useful at operating with high frequencies of rotation /over than $300 \mathrm{~min} /$ and low pressure drop , which is inbred for types with displacements of up to $200 \mathrm{~cm}^{3}$. It is normal for these for the different condition of operation to have high torque, as well as high volume losses: the values of the volumetric efficiency are lower (up to 5% for middle and up to 10% for high values of the pressure drop), than these of the normal versions. That's why the recommended operatingfor "FR version is for applications with pressure dropup to 100 bar.

Additional advantages of "FR" version are prolonging of the life of the hydraulic motors at high frequencies of rotation, as well as the possibility to use them in systems with big variation of the loading.

Look at specification data for hydraulic motors series OR standard version. Only the parameter Starting Pressure is modified.

Type	OR 50	OR 80	OR 100	OR 125	OR 160	OR $\mathbf{2 0 0}$
Max, Starting Pressure with Unloaded Shaft, [bar]	8	8	8	7,5	5,5	4

FUNCTION DIAGRAMS

OR 50

OR 80

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OR 100

OR 125

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OR 160

OR 200

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OR 250


```
OR 315
```


FUNCTION DIAGRAM

OR 400

The function diagram data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

Max. Permissible Shaft Seal Pressure for OP and OR Motors

DIMENSIONS AND MOUNTING DATA

C : 4xM8-13 mm depth
$\mathbf{P}_{(\mathrm{A}, \mathrm{B})}: 2 \times \mathrm{G} 1 / 2$ or $2 \times \mathrm{M} 22 \times 1,5-15 \mathrm{~mm}$ depth
T: G1/4 or M14×1,5-12 mm depth (plugged)

Standard Rotation
Viewed from Shaft End
Port A Pressurized-CW
Port B Pressuized-CCW

Type		L,mm	Type	L, mm	Type	L, mm	Type	L, mm	L 1 , mm
ORF	50	138,0	ORQ 50	143,5	ORFE 50	157,5	ORQE 50	163,5	9,0
ORF	80	143,0	ORQ 80	148,5	ORFE 80	162,5	ORQE 80	168,5	14,0
ORF	100	146,0	ORQ 100	152,0	ORFE 100	165,5	ORQE 100	171,5	17,4
ORF	125	150,5	ORQ 125	156,5	ORFE 125	170,0	ORQE 125	176,0	21,8
ORF	160	156,5	ORQ 160	162,5	ORFE 160	176,0	ORQE 160	182,0	27,8
ORF	200	163,5	ORQ 200	169,5	ORFE 200	183,0	ORQE 200	189,0	34,8
ORF	250	172,0	ORQ 250	179,0	ORFE 250	192,0	ORQE 250	198,0	43,5
ORF	315	183,0	ORQ 315	189,0	ORFE 315	204,0	ORQE 315	210,0	54,8
ORF	400	198,0	ORQ 400	204,0	ORFE 400	218,0	ORQE 400	224,0	69,4

DIMENSIONS AND MOUNTING DATA - ORW

Wheel Mount
$\mathbf{P}_{(A, B):}: 2 \times G 1 / 2$ or $2 \times M 22 \times 1,5-15 \mathrm{~mm}$ depth
T : G1/4 or M14x1,5-12 mm depth (plugged)

Standard Rotation

Viewed from Shaft End
Port A Pressurized-CW
Port B Pressurized-CCW

Reverse Rotation
Viewed from Shaft End
Part A Pressurized-CCW
Port B Pressurized-CW

Permissible Shaft Loads ORW

Type		L, mm	$\mathrm{L}_{n}, \mathrm{~mm}$
ORW	$\mathbf{5 0}$	108,0	9,0
ORW	$\mathbf{8 0}$	113,0	14,0
ORW	$\mathbf{1 0 0}$	116,5	17,4
ORW	$\mathbf{1 2 5}$	121,0	21,8
ORW	$\mathbf{1 6 0}$	127,0	27,8
ORW	$\mathbf{2 0 0}$	134,0	34,8
ORW	$\mathbf{2 5 0}$	142,5	43,5
ORW	$\mathbf{3 1 5}$	154,0	54,8
ORW	$\mathbf{4 0 0}$	168,5	69,4

SHAFT EXTENSIONS FOR OP AND OR MOTORS

C. $\varnothing 25$ straight, Parallel key A8×7×32 DIN 6885
Max. Torque 44 daN mm

CO

- 01^{11} straight, Parallel key $1 / 4^{\prime \prime} \times 1 / 4^{1} \times 1 / 4^{\prime \prime} B S 46$ Max. Torque 44 daNm

SH-splined, BS 2059 (SAE 6B)
SH-splined, BS 2059 (SAE 6 B)
Max. Torque 44 daNm

K-tapered 1:10, Parallel key B5×5×14 DIN 6885 Max. Torque 40 daNm

SA - splined, B25×22h9 DIN 5482 Max. Torque 40 daNm

CB - $\quad 32$ straight, Parallel key A10×8×45 DIN 6885
Max. Torque 77 daNm

SB - splined A25×22×H 10 DIN 5482 Max. Torque 44 da Nm

KB-tapered 1:10, Parallel key B6xóx 20 DIN 6885 Max. Torque 77 daNm

OB-tapered 1:8 SAEJ 501, Parallel key $5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 11^{\prime \prime} 4^{\prime \prime} \mathrm{BS} 46$
Max. Torque 77 da Nm

HB- $811 / 4^{\prime \prime}$ splined 1.4T, ANSI B92.1-1976 Norm Max. Tarque 77 daNm

PERMISSIBLE SHAFT LOADS FOR OR MOTORS

The permissible radial shaft load $P_{\text {rod }}$ depends on the speed (RPM) and distance (L) from the point of load to the mounting flange.

Mounting Flange			
Shaft Version	cylindrical - C, CO tapered - K, splined - SH	splined. HB cylindrical - CB	cylindrical - C, CO
Radial Shaft Load Prod	$\frac{800}{n} \times \frac{25000}{95+L}, d a N$	$\frac{800}{\mathrm{n}} \times \frac{18750}{95+\mathrm{L}}, \mathrm{daN}$	$\frac{800}{n} \times \frac{25000}{101+L}, d a N$

$\mathrm{n}<200 \mathrm{~min} ; \max P_{\mathrm{rad}}=800 \mathrm{daN}$
${ }^{*} n \geq 200 \mathrm{~min}^{-1} ; \mathrm{L}<55 \mathrm{~mm}$

ORN

OR

The curves apply to a B_{10} bearing life of 2000 hours.

Radial Shaft Load $P_{\text {rad }}$ for C, CO Shaft Extensions by $\mathrm{L}=30(24) \mathrm{mm}$

HYDRAULIC MOTORS WTH SPEED SENSOR TYPE

FerHydraulic is introducing hydraulic motor with a new generation of speed sensor. The electric output signal is a standard voltage signal that can be used for regulating the speed of a motor.

The speed is measured by a sensor in accordance with the Hall principle. Signal processing and amplification are performed in the sensor housing. A connection is provided in the housing by a Plug connector M12Series.

This performance is applicable for all motors of OR series. The main technical features correspond to the standard motors series OR.

DIFFERENTIAL HALL SENSOR

Technical data

Frequency range Output Power supply Current input Current load Ambient Temperature Protection
Plug connector Mounting principle
3.. 20000 Hz PNP
10... 36 VDC

20 mA (@24 VDC)
$500 \mathrm{~mA}\left(@ 24 \mathrm{VDC} ; 24^{\circ} \mathrm{C}\right.$)
minus 40 ... plus $125^{\circ} \mathrm{C}$
IP 67
M12-Series
ISO 6149

Output signal

Wiring diagram

Stik type

Terminal No.	Connection
1	U $_{\text {d. }}$ (+supply)
2	No connection
3	U $_{\text {di } .}$ (-supply)
4	Output signal

ORDER CODE

Pos.1- Shaft Seal Version (see page OR-10)
omit - Low pressure seal or Seal for "...B" shaft D - High pressure seal not for "...B" shaft

Pos.2-Case Drain
omit - with drain port

- without drain port

Pos. 3 - Mounting Flange
omit - Oval mount, two holes

F	- Oval mount, four holes
\mathbf{Q}	- Square mount, four bolts
W	- Wheel mount

Pos. 4 - Option (needle bearings)
omit - none
\mathbf{N}^{*} - with needle bearings (not valid for ORW)

Pos.5-Port type

omit - Side ports
E - Rear ports
Pos.6- Displacement code

$\mathbf{5 0}$	$-51,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-80,3\left[\mathrm{~cm}^{3} / \mathrm{rrev}\right]$
$\mathbf{1 0 0}$	$-99,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-125,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-159,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-199,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-250,1\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-315,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-397,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos. 7 - Shaft Extensions ${ }^{* *}$ (see page OP - 13)

C	$-\varnothing 25$ straight, Parallel key A8×7×32 DIN6885
VC	$-\varnothing 25$ straight, Parallel key A8x7x32 DIN6885

CO - $\square 1$ " straight, Parallel key $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime} \mathrm{BS} 46$
VCO - $\varnothing 1$ " straight, Parallel key $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime} \mathrm{BS} 46$ with corrosion resistant bushing
SH - $\varnothing 25,32$ splined BS 2059 (SAE 6B)
VSH - $\varnothing 25,32$ splined BS 2059 (SAE 6B)
with corrosion resistant bushing

K	$-\varnothing 28,56$ tapered $1: 10$, Parallel key B5 $\times 5 \times 14$ DIN 6885
SA	$-\varnothing 24,5$ splined B 25×22 DIN 5482
VSA	$-\varnothing 24,5$ splined B 25×22 DIN 5482

CB - $\varnothing 32$ straight, Parallel key A10×8×45 DIN6885
KB - $\varnothing 35$ tapered 1:10, Parallel key B6x6x20 DIN6885
SB - splined A 25×22 DIN 5482
OB - $\varnothing 11 / 4^{\prime \prime}$ tapered1:8, Parallel key $5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 11 / 4^{\prime \prime} \mathrm{BS} 46$
HB - $\varnothing 11 / 4$ " splined 14T ANSI B92.1-1976

Pos. 8	Ports
omit	- BSPP (ISO 228)
M	- Metric (ISO 262)
Pos. 9	- Special Features (see Specification data on page OR-05)
omit	- none
LL	-Low Leakage
LSV	- Low Speed Valve
FR	- Free Running

Pos. 10 - Rotation
omit - Standard Rotation
\mathbf{R} - Reverse Rotation

Pos. 17	- Option (Paint) ${ }^{+\pi}$
omit	- no Paint
P	- Painted
PC	- Corrosion Protected Paint
Pos. 12	Speed Monitoring
omit	- none
RS-P	- with speed sensor (PNP pull-down resistor)
RS-N	- with speed sensor (NPN pull-up resistor)

NOTES:

* Only with "D" Shaft Seal Versions!
* 1) The permissible output torque for shafts must be not exceeded!

2) The following combinations are not allowed - \mathbf{Q}, N options with "... $\mathrm{B}^{\prime \prime}$ shafts
3) ORW is available only with CB, KB and OB shafts
${ }^{* *}$ Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

LOW SPEED HIGH TORQUE MOTORS OK

INTRODUCTION

OK Series have a spool valve: the distribution valve is integrated in the output shaft. The cardan shaft thus rotates the distribution valve and transfers mechanical energy from the gerotor set to the output shaft.

SPECIFICATION DATA

Code	Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]$	Max. Speed [RPMI]	Max. Torque [daNm]		Max. Output [kW]		Max. Pressure Drop [bar]		Max. Oil Flow [lpm]
		cont.	cont.	int*	cont.	int*	cont.	int*	cont.
OK 50	51,5	775	10	13	9	10,4	140	175	40
OK 80	80,3	750	15,7	19,5	10,4	12,6	140	175	60
OK 100	99,8	600	19,8	24	10,8	12,8	140	175	60
OK 125	125,7	475	25	30	10,8	12,5	140	175	60
OK 160	159,6	375	32	39	10,4	11,5	140	175	60
OK 200	199,8	300	34	42	8,8	10,2	125	155	60
OK 250	250,1	240	40	47	8,1	9,4	110	140	60
OK 315	315,7	190	40	50	7,4	7,8	90	125	60
OK 400	397	150	40	50	6,2	7, 1	75	90	60

* Intermittent operation: the permissible values may occur for max. 10% of every minute.

OUTLINE DIMENSIONS REFERENCE

C : $2 x \mathrm{M} 8-13 \mathrm{~mm}$ depth
$P_{[A, B]}: 2 \times G 1 / 2-15 \mathrm{~mm}$ depth
T: G1/4-12mm depth (plugged)

Standard Rotation

Viewed from Shaft End Port A Pressurized - CW Port B Pressurized-CCW

Type		L, mm
	$\mathrm{L}_{n}, \mathrm{~mm}$	
OK	$\mathbf{5 0}$	107,5
OK	80	112,5
OK	100	116
OK	125	120,5
OK	160	126,5
OK	200	133,5
OK	250	142
OK	300	153,5
OK	400	168

SHAFT EXTENSIONS

C
थ25 straight, Parallel key A8x7×32 DIN 6885 Max. Torque 44 daNm

SH
ब28,56 Splined, BS 2059 (SAE 6B) Max. Torque 44 daNm

CO
ص 25,4 straight, Parallel key $\left.1_{4}{ }^{\prime \prime} x^{1} /_{6}{ }^{\prime \prime} x\right\rceil^{1} \%_{4}{ }^{\prime \prime}$ BS 46 Max. Torque 44 daNm

Q28,56; Tapered 1:70 Parallel key B5 5 5 5 74 DIN 6885 Max. Torque 44 daNm

SA
a28,56 Splined, B25×22h9 DIN 5482
Max. Torque 44 daNm
∇ - Motor Mounting Surface

ORDER CODE

	1	2	3	4	5	6	7
OK							

Pos. 1 - Displacement code

50	$-51,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-80,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-125,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-159,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-199,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-250,1\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-315,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-397,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.2-Shaft Extensions*
C - $\varnothing 25$ straight, Parallel key A $8 \times 7 \times 32$ DIN6885
CO - $\quad 25$ straight, Parallel key $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime} \mathrm{BS} 46$
SH - 628,56 splined BS 2059 (SAE 6B)
K - 628,56 tapered 1:10, Parallel key,
B5×5x14 DIN6885
SA - 28,56 splined B25x22h9 DIN 5482

Pos. 3 - Ports
omit - BSPP (ISO 228)
Pos. 4 - Rotation
omit - Standard Rotation
R - Reverse Rotation
Pos. 5- Option (Paint) ${ }^{\text {th }}$
omit - no Paint

P	- Painted Low Gloss Color
PC	- Corrosion Protected Paint

Pos. 6 - Special Features

omit	- none
LL	- Low Leakage
LSV	- Low Speed Valve
FR	- Free Running

Pos. 7. Design Series

omit - Factory specified

NOTES:

* The permissible output torque for shafts must be ** Color at customer's request. not exceeded!

HYDRAULIC MOTORS OPL

APPLICATION

" Conveyors;

* Feeding mechanism of robots and manipulators;
* Metal working machines;
* Textile machines;
* Machines for agriculture;
* Food industries;
n Mining machinery etc.

CONTENTS

Specification data \qquad OPL-02
Function diagramsOP-06-09
Dimensions and mounting ... OPL-03
Shaft extensions OPL-04
Permissible shaft loads OPL-04
Order code \qquad OPL-05

OPTIONS

" Model- Spool valve, gerotor;
*Antifriction conical bearings;
\# Flange mount;
»Shafts- straight, splined and tapered;

* Metric and BSPP ports;
» Other special features.

GENERAL

Displacement, $\quad\left[\mathrm{cm}^{3} / \mathrm{rev}.\right]$	$49,5 \div 396$
Max. Speed, [RPM]	$1210 \div 150$
Max. Torque, [daNm]	$9,4 \div 50$
Max. Output, [kW]	$9,9 \div 11,7$
Max. Pressure Drop, [bar]	$140 \div 95$
Max. Oil Flow, [1/min]	60
Min. Speed, [RPM]	10
Permissible Shaft Loads, [daN]	$P_{\text {rad }}=1500 ; P_{a}=800$
Pressure fluid	Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)
Temperature range, $\quad\left[{ }^{\circ} \mathrm{C}\right]$	$-30 \div 90$
Optimal Viscosity range, $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$20 \div 75$
Filtration	ISO code 20/16 (Min. recommended fluid filtration of 25 micron)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathrm{mm}^{2} / \mathrm{s}\right)$	Oil flow in drain line $(1 / \mathrm{min})$
	20	2,5
	35	1,8
140	20	3,5
	35	2,8

SPECIFICATION DATA

Type	$\begin{aligned} & \text { OPL } \\ & 50 \end{aligned}$	$\begin{gathered} \text { OPL } \\ 80 \end{gathered}$	$\begin{aligned} & \text { OPL } \\ & 100 \end{aligned}$	$\begin{aligned} & \hline \text { OPL } \\ & 125 \end{aligned}$	$\begin{aligned} & \text { OPL } \\ & 160 \end{aligned}$	$\begin{aligned} & \hline \text { OPL } \\ & 200 \end{aligned}$	$\begin{aligned} & \hline \mathrm{OPL} \\ & 250 \end{aligned}$	$\begin{aligned} & \text { OPL } \\ & 315 \end{aligned}$	$\begin{aligned} & \mathrm{OPL} \\ & 400 \end{aligned}$
Displacement, [cm. ${ }^{3} \mathrm{rev}$.]	49.5	79,2	99	123,8	158,4	198	247,5	316,8	396
Max. Speed, Cont.	1210	755	605	485	378	303	242	190	150
[RPMI] Int. ${ }^{\text {* }}$	1515	945	755	605	472	378	303	236	189
Max. Torque [daNm]	9.4	15,7	19,3	23,7	31,3	36,6	47,0	48,6	50,0
	11,9	19,5	23,7	29,8	37,8	45,6	58,3	56,0	59,0
Peak ${ }^{\text {+ }}$	14,0	22,0	27,0	36,5	42	53,0	67,0	85,0	85,4
Max. Output [kW]	9.9	9,9	9.9	9.9	11,7	10,3	9,8	7.6	6,6
	12,5	12,5	12,5	12,5	12,5	15,5	17,5	8,2	9,2
Max. Pressure Drop [bar]	140	140	140	140	140	140	140	120	95
	175	175	175	175	175	175	175	140	115
	225	225	225	225	225	225	225	225	180
Max. Oil Flow [l/min]	60	60	60	60	60	60	60	60	60
	75	75	75	75	75	75	75	75	75
Max. Indet Pressure [bar]	175	175	175	175	175	175	175	175	175
	200	200	200	200	200	200	200	200	200
	225	225	225	225	225	225	225	225	225
Max. Retum Pressure without Drain Line or Max. Pressure in Drain Line, [bar]	100	100	100	100	100	100	100	100	100
	50	50	50	50	50	50	50	50	50
	25	25	25	25	25	25	25	25	25
	15	15	15	15	15	15	15	15	15
	100	100	100	100	100	100	100	100	100
Max. Retum Pres-sure with Drain Line[bar] $\frac{\text { Cont. }}{\text { Int. }{ }^{*}}$Peak ${ }^{* *}$	175	175	175	175	175	175	175	175	175
	200	200	200	200	200	200	200	200	200
	225	225	225	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]	10	10	10	9	8	7	6	5	5
Min. Starting Torque [daNm]	7.7	14,0	16,8	21,0	28,0	34,6	44,0	46,0	50,0
$\text { Min. Speed }{ }^{* * *} \text {, [RPM] }$	10	10	10	10	10	10	10	10	10
Weight, [kg]	8,4	8,5	8,8	8,9	9,1	9,5	10,0	10,7	11,4

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
* Peak load: the permissible values may occur for max. 1\% of every minute.
** For speeds of 10 RPM or lower, consult factory or your regional manager.

1. Intermittent speed and intermittent pressure drop must not occur simultoneously.
2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4).

If using synthetic fluids consult the factory for altemative seal materials.
4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5. Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

DIMENSIONS AND MOUNTING DATA

Type	L, mm	L, mm
OPL 50	148	6,67
OPL 80	152	10,67
OPL 100	155	13,33
OPL 125	158	16,67
OPL 160	163	21,33
OPL 200	168	26,67
OPL 250	175	33,33
OPL 315	184	42,67
OPL 400	195	53,33

$\mathrm{P}_{(\mathrm{A}, \mathrm{B}):}: 2 \times \mathrm{G} 1 / 2$ or $2 \times \mathrm{M} 22 \times 1,5-15 \mathrm{~mm}$ depth
T: G1/4 or M14×1,5-12 mm depth (plugged)

Standard Rotation
Viewed from Shaft End Port A Pressurized-CW Port B Pressuized-CCW

Reverse Rotation
Viewed from Shaft End
Port A Pressurized-CCW
Port B Pressurized-CW
C. 625 straight, Parallel key A8×7×30 DIN 6885 Max. Torque 44 daNm

CO

- $\sigma 1$ " straight, Parallel key $1 / 4^{11} x^{1 / 4^{\prime \prime} \times 1} 1^{1 / 4^{\prime \prime}}$ BS46

SH-splined, BS 2059 (SAE 6B) Max. Torque 44 daNm

Permissible Shaff Loads EPML

A- Static load
B- $\mathrm{Pa}=200 \mathrm{daN}$
C. $\mathrm{Pa}=800 \mathrm{daN}$

SA - splined B25×22 DIN 5482 Max. Torque 40 daNm

CB - $\sigma 32$ straight, Parallel key A10×8×40 DIN 6885 Max. Torque 77 daNm

HB-a1 $1 / 4^{\prime \prime}$ splined 14T, DP12/24 ANSI B92.1-1976 Max. Torque 77 daNm

KB-tapered 1:10, Woodruff key 6×9 DIN6888 Max. Torque 77 daNm

∇-Motor Mounting Surface

ORDER CODE

Pos. 1 - Mounting Flange

omit - Square mount four holes
F -Oval mount, four holes

Pos. 2 -Displacement code*

$\mathbf{5 0}$	$-49,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-79,2\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-123,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-158,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-198,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-247,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-316,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-396,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.3-Shaft extensions**

C	-
CO	- $\varnothing 1$ " straight, Parallel key $1 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ BS46
SH	- $\varnothing 25,3$ splined BS 2059 (SAE 6B)
SA	- $\varnothing 24$ splined B 25×22 DIN 5482
CB	- $\varnothing 32$ straight, Parallel key A10x8×40 DIN6885
HB	- $\varnothing 11 / 44^{\prime \prime}$ splined 14T ANSI B92.1-1976
KB	ø35 tapered 1:10, Woodruff key 6x9 DIN6888

Pos. 4 Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)
Pos. 5 - Special Features

omit	none
LL	-Low Leakage
LSV	- Low Speed Valve
FR	- - r ree Running

Pos. 6 - Rotation
omit - Standard Rotation
R - Reverse Rotation
Pos. 7. Option (Paint) ${ }^{\text {t** }}$
omit - no Paint

\mathbf{P}	- Painted
$\mathbf{P C}$	- Corrosion Protected Paint

Pos. 8 - Design Series
omit - Factory specified

NOTES:

* See Function diagrams from page OP-06 to page OP-09.
** The permissible output torque for shafts must be not exceeded!
** Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

HYDRAULIC MOTORS ORL

APPLICATION

" Conveyors;

* Feeding mechanism of robots and manipulators;
»Metal working machines;
* Textile machines;
"Machines for agriculture;
" Food industries;
*Mining machinery etc.

CONTENTS

Specification data \qquad . ORL-02
Function diagrams OR-06 $\div 10$
Dimensions and mounting ... ORL-03
Shaft extensions ORL-04
Permissible shaftloads ORL-04
Order code. \qquad ORL-05

OPTIONS

* Model- Spool valve, roll-gerotor;
* Antifriction conical bearings;
*Flange mount:
*Shafts- straight, splined and tapered;
*Metric and BSPP ports:
* Other special features.

GENERAL

Displacement,	$\left[\mathrm{cm}^{3} / \mathrm{rev}.\right]$	$51,5 \div 396$
Max. Speed,	$[\mathrm{RPM}]$	$775 \div 150$
Max. Torque,	$[\mathrm{daNm}]$	$10,1 \div 61$
Max. Output,	$[\mathrm{kW}]$	$7 \div 13$
Max. Pressure Drop,	$[\mathrm{bar}]$	$115 \div 175$
Max. Oil Flow,	$[\mathrm{l} / \mathrm{min}]$	$[\mathrm{RPM}]$

SPECIFICATION DATA

Type		$\begin{gathered} \text { ORL } \\ 50 \end{gathered}$	$\begin{gathered} \text { ORL } \\ 80 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ORL } \\ & 100 \end{aligned}$	$\begin{array}{r} \text { ORL } \\ 125 \\ \hline \end{array}$	$\begin{aligned} & \text { ORL } \\ & 160 \end{aligned}$	$\begin{array}{r} \text { ORL } \\ 200 \end{array}$	$\begin{aligned} & \text { ORL } \\ & 250 \end{aligned}$	$\begin{aligned} & \text { ORL } \\ & 315 \end{aligned}$	$\begin{aligned} & \text { ORL } \\ & 400 \end{aligned}$
Displacement, [cm.3/rev.]		51,5	80,3	99.8	125,7	159,6	199,8	250,1	315,7	397
Max. Speed, [RPM]	Cont	775	750	600	475	375	300	240	190	150
	Cont for "LSV" motors	200	200	200	200	200	200	200	190	150
	Int:*	970	940	750	600	470	375	300	240	190
	Int. for LSV' motors *	250	250	250	250	250	250	250	240	190
Max. Torque [daNm]	Cont.	10,1	20,0	24,0	30,0	39,0	45,0	54,0	55,0	67,0
	Int:*	13,0	22,0	28,0	34,0	43,0	50,0	61,0	63,0	69,0
	Peak ${ }^{2 \pi}$	17,0	27,0	32,0	37,0	46,0	56,0	71,0	83,0	87,0
Max. Output [$\mathrm{K} M]$	Cont.	7	12,5	13,0	12,5	11,5	17,0	10,0	9,0	7,8
	Cont for "LSV" motors	3,6	4,0	5,0	6,2	7,8	8,9	10,5	9,8	7,7
	Int.*	8,5	15,0	15,0	16,0	14,0	13,0	12,0	11,0	10,6
	Int for "LSV" motors*	4,7	5,7	7,3	7,9	10,7	12,0	13,9	13,8	11,8
Max. Pressure Drop [bar]	Cont	140	175	175	175	175	175	175	135	175
	Int,*	175	200	200	200	200	200	200	160	140
	Peak**	225	225	225	225	225	225	225	210	175
Max. Oil Flow [$/ \mathrm{min}$]	Cont:	40	60	60	60	60	60	60	60	60
	Cont for "LSV"motors	10	16	20	25	32	40	50	60	60
	Int. ${ }^{*}$	50	75	75	75	75	75	75	75	75
	Int. for "LSV" motors*	12,5	20	25	32	40	50	62,5	75	75
Max. Inlet Pressure [bar]	Cont:	175	175	175	175	175	175	175	175	175
	Int:*	200	200	200	200	200	200	200	200	200
	Peak ${ }^{\text {m }}$	225	225	225	225	225	225	225	225	225
Max. Retum Pressure without Drain Line or Max. Pressure in Drain Line, [bar]	Cont $0-100$ RPM	100	100	100	100	100	100	100	100	100
	Cont 100-300 RPM	50	50	50	50	50	50	50	50	50
	Cont 300-600 RPM	25	25	25	25	25	25	25	25	25
	Cont, >600 RPM	15	15	15	15	15	15	15	15	15
	Int * 0-max. RPM	100	100	100	100	100	100	100	100	100
Max. Retum Pressure with Drain Line [bur]	Cont.	140	175	175	175	175	175	175	175	175
	lnt:*	175	200	200	200	200	200	200	200	200
	Peak ${ }^{*}$	225	225	225	225	225	225	225	225	225
Max. Starting Pressure with Unloaded Shaft, [bar]		10	10	10	9	7	5	4	3	3
	for "LSV" motors	20	20	20	20	15	15	15	12	12
Min. Starting Torque [daNm]		8	15	20	25	32	37	45	45	49
Min. Speed***, [RPM]		10	10	10	10	10	10	10	10	10
Weight, [kg]		8,5	8,6	8,9	9,0	9,2	9,6	10,1	10,8	11,5

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
* Peak load: the permissible values may occur for max. 1% of every minute.
* For speeds of 10 RPM or lower, consult factory or your regional manager.

1. Intermittent speed and intermittent pressure drop must not occur simultaneously.
2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4).

If using synthetic fluids consult the factory for altemative seal materials.
4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5. Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

DIMENSIONS AND MOUNTING DATA

Type		L. mm	L, m m
ORL $\mathbf{5 0}$	152	9,0	
ORL 80	157	14,0	
ORL 100	160	17,4	
ORL 125	165	21,8	
ORL 160	171	27,8	
ORL 200	178	34,8	
ORL 250	187	43,5	
ORL 315	198	54,8	
ORL 400	212	69,4	

$\mathrm{P}_{(\mathrm{A}, \mathrm{B})}: 2 \times \mathrm{G} 1 / 2$ or $2 \times \mathrm{M} 22 \times 1,5-15 \mathrm{~mm}$ depth
T: G1/4 or M14×1,5-12 mm depth (plugged)

Standard Rotation
Viewed from Shaft End Port A Pressurized-CW Port B Pressurized-CCW

[^4]
SHAFT EXTENSIONS

C. $\propto 25$ straight, Parallel key A8×7×30 DIN 6885 Max. Torque 44 daNm

SH-splined, BS 2059 (SAE 6B) Max. Torque 44 daNm

CB- 32 straight, Parallel key A10×8×40 DIN 6885 Max. Torque 77 daNm

HB- o1 $1 / 4^{\prime \prime}$ splined 14T, DP12/24 ANSI B92.1-1976 Max. Torque 77 daNm

KB - tapered 1:10, woodruff key 6×9 DIN6888 Max. Torque 77 daNm

- Motor Mounting Surface

Permissible Shaft Loads ORL

ORDER CODE

Pos. 1 - Mounting Flange
omit - Square mount, four holes
F - Oval mount, four holes

Pos. 2 -Displacement code*

$\mathbf{5 0}$	$-51,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-80,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-125,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-159,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-199,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-250,1\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-315,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-397,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.3-Shaft Extensions**

C	- $\varnothing 25$ straight, Parallel key A8×7x30 DIN6885
CB	- $\varnothing 32$ straight, Parallel key A10x8×40 DIN6885
SH	- $¢ 25,3$ splined BS 2059 (SAE 6B)
HB	- $\varnothing 11 / 4$ " splined 14T ANSI B92.1-1976
KB	- $\varnothing 35$ tapered 1:10, Woodruff key 6x9 DIN6888

Pos. 4 . Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)
Pos. 5. Special Features
omit - none
LL -Low Leakage
LSV - Low Speed Valve (see Specification data)
FR - Free Running
Pos. 6 - Rotation
omit - Standard Rotation
R - Reverse Rotation
Pos. 7- Option (Paint) ${ }^{ \pm \pm *}$
omit - no Paint
P - Painted
PC - Corrosion Protected Paint
Pos. 8 - Design series
omit - Factory specified

NOTES:

* See Function diagrams from page OR-06 to page OR-10.
** The permissible output torque for shafts must be not exceeded!
*** Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

INTRODUCTION

The motor type ORS has low-speed distribution and they are most efficient at a high drop pressure operating. It's recommendable to use them at low speed rotation, i.e. at low supply flow.

B

OPTIONS

» Model- Spool valve, orbiting roller;
» Shafts- splined;
» Shaft seal for high pressure;
» Other special features.

APPLICATION

" Conveyors;
» Feeding mechanism of robots and manipulators;
» Metal working machines;
" Textile machines;
" Machines for agriculture and foresty;
» Wood working and sawmill machinery etc.

SPECIFICATION DATA

Code	Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]$	Max. Speed [RPM]	Max. Torque [daNm]		Max. Output [kW]		Max. Pressure Drop [bar]		Max. Oil Flow [lpm]
		cont.	cont.	int*	cont.	int*	cont.	int*	cont.
ORS 50	51,5	775	10,0	13,0	8,2	9,7	140	175	40
ORS 80	80,3	750	15,7	19,5	8,2	9,7	140	175	60
ORS 100	99,8	600	19,8	24,0	8,2	9,7	140	175	60
ORS 125	125,7	475	25,0	30,0	8,2	9,7	140	175	60
ORS 160	159,6	375	32,0	39,0	8,2	9,7	140	175	60
ORS 200	199,8	300	34,4	47,0	8,2	12,7	125	175	60
ORS 250	229,0	240	34,5	46,5	7,9	12,0	110	150	60
ORS 300	277,0	190	34,5	45,7	6,8	9,3	90	125	60
ORS 400	369,0	150	39,0	50,2	5,4	7,8	80	105	60

[^5]
OUTLINE DIMENSIONS REFERENCE

Type	L土0,5,in, $[\mathrm{mm}]$	$\mathrm{L}, \mathrm{in} .[\mathrm{mm}]$
ORS 50	70,0	9,0
ORS 80	75,0	14,0
ORS 100	78,4	17,4
ORS 125	82,8	21,8
ORS 160	88,8	27,8
ORS 200	95,8	34,8
ORS 250	93,5	32,5
ORS 300	100,3	39,3
ORS 400	113,4	52,4

$P_{(A, B)}: 2 x ø 8$
$\mathrm{T}: \mathrm{G} 1 / 4-\mathrm{A}$ (plugged)

Standard Rotation
Viewed from Shaft End Port A Pressurized - CW Port B Pressurized - CCW

ORDER CODE

ORS				

Pos. 1 - Displacement code

$\mathbf{5 0}$	$-51,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0}$	$-80,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 0 0}$	$-99,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 2 5}$	$-125,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{1 6 0}$	$-159,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-199,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-229,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 0 0}$	$-277,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-369,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

NOTES:

* Color at customer's request.

The hydraulic motors are mangano phosphatized as standard.

HYDRAULIC MOTORS OH

APPLICATION

* Conveyors;
* Feeding mechanism of robots and manipulators;
" Metal working machines;
" Textile machines;
"Machines for agriculture;
" Food industries;

" Mining machinery etc.

CONTENTS

Specification data ….......... OH-02
Function diagrams $\mathrm{OH}-03-05$
Permissible shaft loads $\mathrm{OH}-05$
Dimensions and mounting ... $\mathrm{OH}-07$
Shaft extensions OH-07
Order code $\mathrm{OH}-07$

OPTIONS

Model- Spool valve, roll-gerotor
» Flange mount;
„ Shafts- straight, splined and tapered;
" Metric and BSPP ports;

* Other special features.

GENERAL

Displacement,	$\left[\mathrm{cm}^{3} / \mathrm{rev}.\right]$	$201,3 \div 502,4$
Max. Speed,	$[\mathrm{RPM}]$	$370 \div 150$
Max. Torque,	$[\mathrm{daNm}]$	$51 \div 85$
Max. Output,	$[\mathrm{kW}]$	$16 \div 11$
Max. Pressure Drop,	$[\mathrm{bar}]$	$175 \div 125$
Max. Oil Flow,	$[1 / \mathrm{min}]$	75
Min. Speed,	$[\mathrm{RPM}]$	
Pressure fluid		
Temperature range,	$\left[{ }^{\circ} \mathrm{C}\right]$	
Optimal Viscosity range, $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$		
Filtration		Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathrm{mm}^{2} / \mathrm{s}\right)$	Oil flow in drain line (1/min)
100	20	2,5
	35	1,8
140	20	3,5
	35	2,8

Pressure Losses

SPECIFICATION DATA

Type		$\begin{aligned} & \hline \mathrm{OH} \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{OH} \\ & 250 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OH} \\ & 315 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{OH} \\ & 400 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{OH} \\ & 500 \\ & \hline \end{aligned}$
Displacement [cm3/rev.]		201,3	252	314,9	396,8	502,4
Max. Speed, [RPM]	cont.	370	295	235	185	150
	Int.*	445	350	285	225	180
Max. Torque [daNm]	cont.	51	61	74	84	85
	Int.*	58	70	82	98	104
	peak ${ }^{* *}$	64	79	98	109	117
Max. Output [kW]	cont.	16	16	14	12,5	11
	Int.*	18,5	18,5	15,5	15	14
Max. Pressure Drop [bar]	cont.	175	175	175	155	125
	Int.*	200	200	200	190	160
	peak**	225	225	225	210	180
Max. Oil Flow [$1 / \mathrm{min}$]	cont.	75	75	75	75	75
	Int.*	90	90	90	90	90
Max. Inlet Pressure [bar]	cont.	200	200	200	200	200
	Int.*	225	225	225	225	225
	peak**	250	250	250	250	250
Max. Return Pressure without Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	100	100	100	100	100
	cont. 100-200 RPM	50	50	50	50	50
	cont. 200-300 RPM	20	20	20	20	20
	Int.* 0-max. RPM	100	100	100	100	100
Max. Starting Pressure with Unloaded Shaft, [bar]		5	5	5	5	5
Min. Starting Torque [daNm]	at max. press. drop cont.	39	52	66	72	72
	at max. press. drop Int.*	45	59	73	88	88
Min. Speed***, [RPM]		10	10	8	5	5
Weight, [kg]		10,5	11	11,5	12,3	13

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
** Peak load: the permissible values may occur for max. 1\% of every minute.
** For speeds of 5 RPM lower than given, consult factory or your regional manager.

1) Intermittent speed and intermittent pressure must not occur simultaneously.
2) Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3) Recommend using a premium quality, anti-wear type mineral based hydraulic oil, HLP(DIN51524) or HM(ISO6743/4). If using synthetic fluids consult the factory for altemative seal materials.
4) Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.
5) Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6) To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

FUNCTION DIAGRAMS

OH 200

OH 250

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OH 315

OH 400

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OH 500

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

PERMISSIBLE SHAFT LOADS FOR OH MOTORS

The permissible radial shaft load $P_{\text {rad }}$ depends on the speed (RPM) and distance (L) from the point of load to the mounting flange.

Radial Shaft Load $P_{\text {rod }}=\frac{1100}{\pi} \times \frac{25000}{103,5+L}, d a N^{*}$
${ }^{\star} \mathrm{L}<60 \mathrm{~mm} ; \mathrm{n} \geq 200 \mathrm{~min}^{-1}$

DIMENSIONS

Magneto Maunt (4 holes)

Type		L, mm	L, mm
OH	200	170,8	27,8
OH	250	177,8	34,8
OH	315	186,5	43,5
OH	400	197,8	54,8
OH	500	212,4	69,4

C : $4 x \mathrm{M} 8$ - 13 mmdepth
$\mathbf{P}_{(A, B)}: 2 \times G 1 / 2$ or $2 \times M 22 \times 1,5-15 \mathrm{~mm}$ depth
T : G1/4 or M14×1,5-12 mm depth (plugged)

Standard Rotation

Viewed from Shaft End Port A Pressurized-CW Port B Pressurized-CCW

Reverse Rotation

Viewed from Shaft End Port A Pressurized- CCW Port B Pressurized-CW

SHAFT EXTENSIONS

C- $\varnothing 32$ straight, Parallel key A. $10 \times 8 \times 45$ DIN 6885
Max. Torque 77 daNm

CB - -35 straight, Parallel key A $10 \times 8 \times 45$ DIN 6885 Max. Torque 95 daNm

SH-ه1//4" splined 14T, DP 12/24 ANSI B92.1-1976 Max. Torque 95 daNm

K-tapered 1:10, Parallel key B6́x6×20 DIN 6885 Max. Torque 95 daNm

ORDER CODE

Pos. 1 -Displacement code

$\mathbf{2 0 0}$	$-201,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-252,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-314,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-396,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{5 0 0}$	$-502,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.2- Shaft Extensions*

| C | $-\varnothing 32$ straight, Parallel key A10×8×45 DIN 6885 |
| :--- | :--- | :--- |
| SH | $-\varnothing 11 / 4^{\prime \prime}$ splined 14T ANSI B92.1-1970 |
| CB | $-\varnothing 35$ straight, Parallel key A10×8×45 DIN 6885 |
| K | $-\varnothing 35$ tapered 1:10, Parallel key B6x6×20 DIN 6885 |

Pos.3-Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)

Pos. 4 - Special Features
omit - none

LL	-Low Leakage
LSV	- Low Speed Valve
FR	- Free Running

Pos. 5 - Rotation

omit - Standard Rotation
\mathbf{R} - Reverse Rotation
Pos. 6- Option (Paint) ${ }^{* *}$
omit - no Paint

\mathbf{P}
$\mathbf{P C}$

- Painted

Pos. 7 - Design Series
omit - Factory specified

NOTES:

* The permissible output torque for shafts must be not exceeded!
* Color at customer's request.

The hydraulic motors are mangano-phosphatized as standard.

APPLICATION

» Conveyors;
» Metal working machines;
» Machines for agriculture;
»Road building machines;
» Mining machinery;
*Food industries;
» Special vehicles etc.

CONTENTS

Specification data	OS-02 -04
Function diagrams.	OS-05 $\div 08$
Dimensions and mounting	OS-09 $\div 10$
Wheel motor	OS-11
Motor with Drum brake- OSB	OS-12
Shaft extensions	OS-13
Tacho connection	OS-13
Permissible shaft loads	OS-14
Function diagram for OSSB	OS-14
Dimensions and mounting-OSS,OSV	Z...OS-15-17
Internal Spline data	OS
Order code	

OPTIONS

*Model- Disc valve, roll-gerotor
»Flange and wheel mount;

* Short motor;
\% Motor with Drum Brake;
* Tacho and speed sensor connection;
»Side and rear ports
\% Shafts- straight, splined and tapered;
»Metric and BSPP ports;
* Other special features.

SPECIFICATION DATA

Type		OS 80	OS 100	OS 125	OS 160	OS 200
Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}.\right]$		80,5	100	125,7	159,7	200
Max. Speed, [RPM]	cont.	810	750	600	470	375
	Int.*	1000	900	720	560	450
Max. Torque [daNm]	cont.	20	25	32	40	46
	Int.*	24	30	38	48	60
	peak**	26	32	40	51	65
Max. Output [kW]	cont.	16	17,5	17,5	17,5	15,5
	int. *	19	21	21	21	22
Max. Pressure Drop [bar]	cont.	175	175	175	175	160
	Int.*	210	210	210	210	210
	peak**	250	250	225	225	225
Max. Oil Flow [$1 / \mathrm{min}$]	cont.	65	75	75	75	75
	Int.*	80	90	90	90	90
Max. Inlet Pressure [bar]	cont.	210	210	210	210	210
	Int.*	250	250	250	250	250
	peak**	300	300	300	300	300
Max. Return Pressure without Drain Line or Max. Pressure inDrainLine, [bar]	cont. 0-100 RPM	100	100	100	100	100
	cont. 100-300 RPM	50	50	50	50	50
	cont. >300 RPM	20	20	20	20	20
	Int.* 0-max. RPM	100	100	100	100	100
Max. Return Pressure with Drain Line [bar]	cont.	140	140	140	140	140
	Int.*	175	175	175	175	175
	peak**	210	210	210	210	210
Max. Starting Pressure with Unloaded Shaft, [bar]		12	10	10	8	8
Min. Starting Torque [daNm]	at max. press. drop cont.	16,5	20.5	26	28	33
	at max. press. drop Int.*	19,5	25	31	39	41
Min. Speed***, [RPM]		10	10	8	8	6
Weight, [kg]	OSFE	9,8[10,2]	10[10,4]	10,3[10,7]	10,7[11,1]	11,7[11,5]
	OSWE	10,3[10,7]	10,5[10,9]	10,8[11,2]	11,2[11,6]	11,6[12]
	OSZE	$7,8[8,2]$	8[8,4]	8,3[8,7]	8,7[9,1]	9,1[9,5]
	OSVE	5,7[6,1]	5,9[6,3]	$6,2[6,6]$	$6,6[7]$	$7[7,4]$
	OSQE	10,2[10,6]	10,4[10,8]	10,7[11,1]	11,1[11,5]	11,5[11,9]
	OSBE	16,8[17,2]	$17,0[17,4]$	17,3[17,7]	17,7[18,1]	18,1[18,5]

* Intermittent operation: the permissible values may occur for max. 10\% of every minute.
** Peak load: the permissible values may occur for max. 1% of every minute.
*** For speeds of 5 RPM lower than given, consult factory or your regional manager.

1) Intermittent speed and intermittent pressure must not occur simultaneously.
2) Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3) Recommend using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials,
4) Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5) Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6) To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

Type		OS 250	OS 315	OS 400	OS 475	OS 525	OS 565
Displacement [cm/rev.]		250	314,9	397	474,6	522,7	564,9
Max. Speed, [RPN]	cont.	300	240	185	160	145	130
	Int.*	360	290	230	190	175	160
Max. Torque [daNm]	cont.	50	63	67	58	58	58
	Int.*	63	79	79	68	69	69
	peak ${ }^{* *}$	69	84	85	84	85	85
Max. Output [kW]	cont.	13,5	11.0	10,5	8,4	7,6	6,9
	int.*	19	18	15	11,3	10.4	9,6
Max. Pressure Drop [bar]	cont.	140	140	120	85	80	75
	Int.*	175	175	140	100	90	85
	peak ${ }^{* *}$	200	185	140	115	105	100
Max. Oil Flow [$1 / \mathrm{min}$]	cont.	75	75	75	75	75	75
	Int. ${ }^{\text {a }}$	90	90	90	90	90	90
Max. Inlet Pressure [bar]	cont.	210	210	210	210	210	210
	Int.*	250	250	250	250	250	250
	peak**	300	300	300	300	300	300
Max. Return Pressure without Drain Line or Max. Pressure inDrainLine, [bar]	cont. 0-100 RPM	100	100	100	100	100	100
	cont. 100-300 RPM	50	50	50	50	50	50
	cont. >300 RPM	-	,	-	-	-	-
	Int.* 0-max. RPM	100	100	100	100	100	100
Max. Retum Pressure with Drain Line [bar]	cont.	140	140	140	140	140	140
	Int.*	175	175	175	175	175	175
	peak ${ }^{* *}$	210	210	210	210	210	210
Max. Starting Pressure with Unloaded Shaft, [bar]		8	8	8	8	8	8
Min. Starting Torque [daNm]	at max. press. drop cont.	36	44	47	47	47	47
	at max. press. drop Int.*	44	52	55	55	55	55
Min. Speed***, [RPM]		6	5	5	5	5	5
Weight, [kg]	OSFE	11,6[12]	12,3[12,7]	13,2[13,6]	14[14,4]	14,9[15,3]	$14,9[15,3]$
	OSWE	12,1[12,5]	12,8[13,2]	$13,7[14,1]$	14,5[14,9]	15,4[15,8]	15,4[15,8]
	OSZE	9,6[10]	10,3[10,7]	11,2[11,6]	12[12,4]	12,9[13,3]	12,9[13,3]
	OSVE	7,5[7,9]	8,2[8,6]	9,1[9,5]	9,9[10,3]	10,8[11,2]	10,8[11,2]
	OSQE	12[12,4]	12,7[13,1]	13,6[14]	14,4[14,8]	15,3[15,7]	15,3[15,7]
	OSBE	18,6[19]	19,3[19,7]	20,2[20,6]	$21[21,4]$	$21,9[22,3]$	21,9[22,3]

* Intermittent operation: the permissible values may occur for max. 10\% of every minute.
** Peak load: the permissible values may occur for max. 1% of every minute.
** For speeds of 5 RPM lower than given, consult factory or your regional manager.

1) Intermittent speed and intermittent pressure must not occur simultaneously.
2) Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3) Recommend using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials,
4) Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5) Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6) To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

SPECIFICATION DATA for OS...LSV

Low Speed Valve (LSV) "LSV" Series hydraulic motors have been designed to operate with normal pressure drop and to ensure smooth run at low speed (up to 200 rilin), as the best security for operation is guaranteed at frequency of rotation $20 \div 50 \mathrm{~min}^{-1}$. They have an increased starting pressure drop and are not recommended for using at pressure less than 40 bars.

Look at specification data for hydraulic motors standard version. The modification concerns only the following parameters : maximum speed, maximum output, maximum Oil flow and maximum starting pressure.

Type		OS 80	OS 100	OS 125	OS 160	OS 200	OR 250	OS 315	OS 400
Max. Speed, [RPM]	Cont	200	200	200	200	200	200	200	185
	Int.*	250	250	250	250	250	250	250	225
Max. Output [kW]	Cont.	4,6	6,0	7,4	8,0	8,0	8,8	10,6	9,5
	Int.*	6,5	8,4	10,0	12,2	12,4	13,4	15,0	12,8
Max. Oil Flow [l/min]	Cont.	16	20	25	32	40.	50	65	75
	Int. *	20	25	32	40	50	62,5	80	90
Max. Starting Pressure with Unloaded Shaft, [bar]		25	20	20	15	15	15	15	15

SPECIFICATION DATA for OS...LL

Low Leakage (LL) "LL" Series hydraulic motors have been designed to operate at the whole standard range of working conditions (pressure drop and frequency of rotation), but with considerable decreased volumetric losses in the drainage ports. Their main purpose is to operate as series-connected motors in hydraulic systems.

For this version is permissible decreasing of the maximal torque with up to 5% (at middle speed) and up to 10% (at high speed) in comparison to the standard versions of motors.

Look at specification data for hydraulic motors standard version. The modification concerns only the parameters: maximum torque, maximum output, minimum starting torque.

Type		OS 80	OS 100	OS 125	OS 160	OS 200	OS 250	OS 315	OS 400
Max. Torque	Cont	22,9	28,5	36,4	33,2	39,0	43,8	52,6	56,5
[daNm]	Int.*	25,2	31,1	39,6	46,8	48,8	52,6	61,4	67,2
Max. Output	Cont	17,8	19,3	19,3	14.8	13,3	11,8	10.9	9,5
[kW]	Int. **	19,3	21,3	21,4	20,0	16,6	14,2	12,8	12,3
Min. Starting Torque	cont:	18,7	23,2	29,6	27,3	32,2	35,1	43,0	45,8
[daNm]	Int. *	20,3	25,9	32,3	38,0	40,0	43,0	50,7	53,6

FUNCTION DIAGRAMS

OS 80

OS 100

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OS 160

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OS 200

OS 250

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OS 400

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

E Rear Ports

C: $2 x \mathrm{M} 10-12 \mathrm{~mm}$ depth
$\mathrm{P}_{[\mathrm{A}, \mathrm{B}]}: 2 \times \mathrm{K} 1 / 2$ or $2 \times \mathrm{M} 22 \times 1,5-15 \mathrm{~mm}$ depth T: G 1/4 or M14x1,5-12 mm depth (plugged)

Standard Rotation
Viewed from Shaft End Port A Pressurized-CW Port B Pressuized-CCW

Reverse Rotation Viewed from Shaft End Port A Pressurized-CCW
PortB Pressurized-CW

Type		L, mm	L. mm	Type		L, mm	$L_{1}, \mathrm{~mm}$
OS(A)	$\mathbf{8 0}$	166	121	OS(A)E	$\mathbf{8 0}$	173	11
OS(A)	$\mathbf{1 0 0}$	169	125	OS(A)E	$\mathbf{1 0 0}$	177	14,4
OS(A)	$\mathbf{1 2 5}$	174	129	OS(A)E	$\mathbf{1 2 5}$	181	18,8
OS(A)	$\mathbf{1 6 0}$	180	135	OS(A)E	$\mathbf{1 6 0}$	187	24,8
OS(A)	$\mathbf{2 0 0}$	187	142	OS(A)E	$\mathbf{2 0 0}$	194	31,8
OS(A)	$\mathbf{2 5 0}$	195	151	OS(A)E	$\mathbf{2 5 0}$	203	40,5
OS(A)	$\mathbf{3 1 5}$	207	162	OS(A)E	$\mathbf{3 1 5}$	214	51,8
OS(A)	$\mathbf{4 0 0}$	221	176	OS(A)E	$\mathbf{4 0 0}$	228	66,4
OS(A)	$\mathbf{4 7 5}$	235	190	OS(A)E	$\mathbf{4 7 5}$	242	79,6
OS(A)	$\mathbf{5 6 5}$	250	206	OS(A)E	$\mathbf{5 6 5}$	257	95,3
OS(A)	$\mathbf{7 1 5}$	276	231	OS(A)E	$\mathbf{7 1 5}$	283	121,2

* The width of the gerolor is 3 mm greater than L_{1}.

DIMENSIONS AND MOUNTING DATA

Mounting

E Rear Ports

Standard Rotation
Viewed from Shaft End
Port A Pressurized - CW
Port B Pressurized - CCW

Square Mount (4 Holes)

Reverse Rotation
Viewed from Shaft End Port A Pressurized-CCW Port B Pressurized - CW

Type	L, mm	L_{2}, mm	Type	L, mm	$\mathrm{L}_{2}, \mathrm{~mm}$	Type	L, mm	Type	L, mm	* L_{1}, mm
OSF 80	166	121	OSQ 80	177	133	OSFE 80	173	OSQE 80	185	11
OSF 100	169	125	OSQ 100	181	137	OSFE 100	177	OSQE 100	189	14,4
OSF 125	174	129	OSQ 125	185	141	OSFE 125	181	OSQE 125	193	18,8
OSF 160	180	135	OSQ 160	191	147	OSFE 160	187	OSQE 160	199	24,8
OSF 200	187	142	OSQ 200	198	154	OSFE 200	194	OSQE 200	206	31,8
OSF 250	195	151	OSQ 250	207	163	OSFE 250	203	OSQE 250	215	40,5
OSF 315	207	162	OSQ 315	218	174	OSFE 315	214	OSQE 315	226	51,8
OSF 400	221	176	OSQ 400	233	189	OSFE 400	228	OSQE 400	241	66,4
OSF 475	235	190	OSQ 475	245	202	OSFE 475	242	OSQE 475	254	79,6
OSF 565	250	206	OSQ 565	261	217	OSFE 565	257	OSQE 565	269	95,3
OSF 715	276	231	OSQ 715	287	243	OSFE 715	283	OSQE 715	295	121,2

* The width of the gerolor is 3 mm greater than L_{1}.

DIMENSIONS AND MOUNTING DATA - OSW

E Rear Port

Type	$\mathrm{L}_{1} \mathrm{~mm}^{*} \mathrm{~L}_{1}, \mathrm{~mm}_{\mathrm{L}}, \mathrm{mm}$	Type	L, mm		
OSW 80	127	11,0	84	OSWE 80	138
OSW 100	131	14,4	88	OSWE 100	142
OSW 125	135	18,8	92	OSWE 125	146
OSW 160	141	24,8	98	OSWE 160	152
OSW 200	148	31,8	105	OSWE 200	159
OSW 250	157	40,5	114	OSWE 250	168
OSW 315	168	51,8	125	OSWE 315	179
OSW 400	182	66,4	140	OSWE 400	194
OSW 475	196	79,6	153	OSWE 475	207
OSW 565	211	95,3	168	OSWE 565	222
OSW 715	237	121,2	194	OSWE 715	248

* The width of the gerolor is 3 mm greater than L_{1}.

DIMENSIONS AND MOUNTING DATA - OSB

B Motor with Brum Brake

Actuating the brake level, the brake shaft is turned. The rectangular shape of the inner part of this shaft forces the brake pads to be pressed against the brake drum. This brakes the wheel or the winch drum.
Releasing the level, the springs pull it and the brake pads back to the initial position. The motor output shaft is released. Minimum angle adjustment is 10°. It can be adjusted by dismounting the level. Depending on the application You can choose the actuating direction of the brake level. The rod connection actuating the brake should be capable of moving at last 25 mm from neutral to extreme position.

F: Inspection hole for checking brake lining
T: G $1 / 4$ or M14×1,5-12 mm depth (plugged)

C: $2 \times \mathrm{M} 10-12 \mathrm{~mm}$ depth
D: Wheel bolts $5 \times \mathrm{M} 12 \times 1,5$
E: $4 x \mathrm{M} 12 ; 17 \mathrm{~mm}$ depth, 900
$P_{(A, B)}: 2 \times G 1 / 2$ or $2 \times M 22 \times 1,5-15 \mathrm{~mm}$ depth

Rear Port

| Type | L, mm | ${ }^{*} \mathrm{~L}, \mathrm{~mm}$ | $\mathrm{~L}_{2}, \mathrm{~mm}$ | Type | L, mm |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OSB 80 | 117 | 11,0 | 71 | OSBE 80 | 127 |
| OSB 100 | 120 | 14,4 | 74 | OSBE 100 | 130 |
| OSB 125 | 124 | 18,8 | 79 | OSBE 125 | 134 |
| OSB 160 | 130 | 24,8 | 85 | OSBE 160 | 140 |
| OSB 200 | 137 | 31,8 | 92 | OSBE 200 | 147 |
| OSB 250 | 146 | 40,5 | 107 | OSBE 250 | 156 |
| OSB 315 | 157 | 51,8 | 112 | OSBE 315 | 167 |
| OSB 400 | 172 | 66,4 | 127 | OSBE 400 | 182 |
| OSB 475 | 186 | 79,6 | 140 | OSBE 475 | 196 |
| OSB 565 | 201 | 95,3 | 155 | OSBE 565 | 211 |
| OSB 715 | 227 | 121,2 | 181 | OSBE 715 | 237 |

* The width of gerolor is 3 mm greater than L_{1}.

Standard Rotation

Viewed from Shaft End
Port A Pressurized-CW
Port B Pressurized-CCW

Reverse Rotation

Viewed from Shaft End
Port A Pressurized-CCW
Port B Pressurized-CW

SHAFT EXTENSIONS

C. $\varnothing 32$ straight, Parallel key A $10 \times 8 \times 45$ DIN 6885 Max. Torque 77 daNm

CO- $\sigma 11 / 4^{\prime \prime}$ straight, Parallel key $5 / 16^{\prime \prime} \times 5 / 16^{\prime \prime} \times 1 \frac{1 / 4^{\prime \prime} \mathrm{BS} 46}{}$ Max. Torque 77 daNm

K-tapered 1:10, Parallel key B6x6x20 DIN 6885 Max. Torque $95 \mathrm{daNm} \quad \mathrm{S}=41$

SH - $\varnothing 11 / 4^{\prime \prime}$ splined 14T, DP12/24 ANSI B92.1-1976 Max. Torque 95 daNm

SL - $\varnothing 34,85$ p.t.o. DIN 9611 Form 1
Max. Torque 77 daNm

MOTORS WITH TACHO CONNECTION - Option " T "

PERMISSIBLE SHAFT LOADS

The output shaft runs in tapered bearings that permit high axial and radial forces.
Curve " 1 " shows max. radial shaft load. Any shaft load exceeding the values quoted in the curve will seriously reduce motor life. The two other curves apply to a B10 bearing life of 3000 hours at 200 RPM.

FUNCTION DIAGRAM OSB

DIMENSIONS AND MOUNTING DATA - OSS, OSV and OSZ

Type ${ }^{\text {* }}$	L, mm	$\mathrm{L}_{2}, \mathrm{~mm}$	Type	L, mm	$\mathrm{L}_{2}, \mathrm{~mm}$	Type	L, mm	Type	L, mm	L, mm
OSS 80	123	80	OSV 80	89	49	OSSE 80	134	OSVE 80	97	1
OSS 100	127	84	OSV 100	92	52,5	OSSE 100	138	OSVE 100	100	14,4
OSS 125	131	87	OSV 125	97	57	OSSE 125	141	OSVE 125	105	18,8
OSS 160	137	93	OSV 160	103	63	OSSE 160	147	OSVE 160	111	24,8
OSS 200	144	100	OSV 200	110	70	OSSE 200	154	OSVE 200	118	31,8
OSS 250	153	109	OSV 250	178	78,5	OSSE 250	163	OSVE 250	126	40,5
OSS 315	164	120	OsV 315	130	90	OSSE 315	174	OSVE 315	138	51,8
OSS 400	17	135	OSV 400	144	105	OSSE 400	189	OSVE 400	153	66,4
OSS 475	192	149	OSV 475	158	118	OSSE 475	203	OSVE 475	166	79,6
OSS 565	207	164	OSV 565	173	133	OSSE 565	218	OSVE 565	181	95,3
OSS 715	233	190	OSV 715	199	159	OSSE 715	244	OSVE 715	207	121,2

[^6]
DIMENSIONS OF THE ATTACHED COMPONENT

For OSS

For OSZ

F: Oil circulation hole
G: Internal drain channel
H : Hardened stop plate
I: O- Ring $100 \times 3 \mathrm{~mm}$ (for OSS) or $102 \times 3 \mathrm{~mm}$ (for OSZ)

J: $4 \mathrm{xM} 10-16 \mathrm{~mm}$ depth(for OSS) or $4 \times M 12-20 \mathrm{~mm}$ depth (for OSZ), 90°
N : Needle bearing $1{ }^{3} /{ }_{8}^{\prime \prime} \times 13 / 4^{\prime \prime}$
O: O- Ring $34,5 \times 3 \mathrm{~mm}$
T: Drain connection G1/4 or M14×1,5

DIMENSIONS OF THE ATTACHED COMPONENT (continued)

For OSV

E: Extemal drain channel
G; Internal drain channel

H: Hardened stop plate
I: O - Ring $85 \times 2 \mathrm{~mm}$

DRAIN CONNECTION

A drain line ought to be used when pressure in the return line can exceed the permissible pressure. It can be connected:

- For OSZ at the drain port of the motor;
- For OSV at the drain connection of the attached component. The maximum pressure in the drain line is limited by the attachedcomponent and its shaft seal.

The drain line must be possible for oil to flow freely between motor and attached component and must be led to the tank. The maximum pressure in the drain line is limited by the attached component and its seal.

INTERNAL SPLINE DATA FOR THE ATTACHED COMPONENT

Standard ANSI 892.1-7976, class 5
$[m=2.1166$; corrected $x . m=+0,8$]

Fillet Root Side Fit		mm
Number of Teeth	z	12
Diametral Pitch	DP	$12 / 24$
Pressure Angle		30°
Pitch Dia.	D	25,4
Major Dia.	Dri	$28,0.0,1$
Minor Dia.	Di	$23,0^{+0,033}$
Space Width [Circular]	Lo	$4,308 \pm 0,020$
Fillet Radius	Rmin	0,2
Max. Measurement between Pin	L	$17,62^{+0,15}$
Pin Dia.	d	$4,835 \pm 0,001$

Hardering Specification:
HRC 60 ± 2
Effective case depth (HRC 52) $0,7 \pm 0,2 \mathrm{~mm}$ Materiall 20 MoCr4 DIN 17210 or better

Above are when hardened

OUTLINE DIMENSIONS REFERENCE for OSU

Type	L, mm	Type	L. mm	L $1 . \mathrm{mm}$	$\mathrm{L}_{2} \mathrm{~mm}$	$\mathrm{L}_{3}, \mathrm{~mm}$
OSU 80	98,5	OSUE 80	103,5	14,0	63,0	22,0
OSU 100	102,0	OSUE 100	107,0	17.	66,4	18,5
OSU 125	106,0	OSUE 125	113,0	21,8	70,8	19,0
OSU 160	112,0	OSUE 160	117,0	27,8	76,8	23,0
OSU 200	119.0	OSUE 200	124,0	34,8	83,8	21,0
OSU 250	128,	OSUE 250	133	43,5	92,5	22,5
OSU 315	139,0	OSUE 315	144,0	54,8	103,8	21,0
OSU 400	154,0	OSUE 400	159,0	69,4	118,4	21,5

DIMENSIONS OF THE ATTACHED COMPONENT for OSU

J: $4 \times \mathrm{M} 10-26 \mathrm{~mm}$ depth, $90^{\circ}, \varnothing 104$ I: 0 - Ring $75 \times 3 \mathrm{~mm}$

INTERNAL SPLINE DATA FOR THE ATTACHED COMPONENT

Standard ANSI B92.1-1976, class 5
[$m=2.1166$; corrected x. $m=+0,8$]

Fillet Root Side Fit		mm
Number of Teeth	z	12
Diametral Pitch	DP	$12 / 24$
Pressure Angle		30°
Pitch Dia.	D	25,4
Major Dia.	Dri	$28,0.0,1$
Minor Did.	Di	$23,0^{+0,033}$
Space Width [Circular]	Lo	$4,308 \pm 0,020$
Fillet Radius	Rmin	0,2
Max. Measurement between Pirt	L	$17,62+0,75$
Pin Dia.	d	$4,835 \pm 0,001$

Above are when hardened

Hardering Specification:
HRC 60 ± 2
Effective case depth (HRC 52) $0,7 \pm 0,2 \mathrm{~mm}$
Materiall 20 MoCr4 DIN 17210 or better

Hydraulic motors with speed sensor type OS...RS

Fer Hydraulic is introducing hydraulic motor with a new generation of speed sensor. The electric output signal is a standard voltage signal that can be used for regulating the speed of a motor.

The speed is measured by a sensor in accordance with the Hall principle. Signal processing and amplification are performed in the sensor housing. Aconnection is provided in the housing by a Plug connector M12 Series.

This performance is applicable for all motors of OS series. The main technical features correspond to the standard motors series OS.

DIFFERENTIAL HALL SENSOR

Technical data

Output signal

Frequency range
Output Power supply Current input Current load Ambient Temperature Protection Plug connector Mounting principle Pulses per revolution
3.. 20000 Hz PNP
10... 36 VDC 20 mA (@24 VDC) $500 \mathrm{~mA}\left(@ 24\right.$ VDC; $24^{\circ} \mathrm{C}$) minus $40 \ldots$ plus $125^{\circ} \mathrm{C}$ IP 67 M12-Series ISO 6149 54

Load max. $. I_{\text {high }}=I_{\text {kw }}<50 \mathrm{~mA}$
No load current, max: 20 mA

Wiring diagram

PNP

NPN

Stik type

Terminal No.	Connection	
1	$U_{\text {d. }}$	
2	2	No connection
	2	OV
	4	Output signal

ORDER CODE

	1	2	3	4	5	6	7	8	9	10	11
OS											

Pos. 1 - Mounting Flange

omit - SAE A mount, four holes

\mathbf{A}
\mathbf{F}
\mathbf{Q}
\mathbf{B}
\mathbf{S}
\mathbf{V}
\mathbf{W}
\mathbf{Z}

- SAE A mount, two holes
- Magneto mount, four holes
- Square mount, four holes
- Motor with drum brake
- Short mount
- Very short mount
- Wheel mount
- Short mount, with place for needle bearing

Pos. 2- Port type

omit - Side ports

E

- Rear ports

Pos. 3 - Displacement code

| $\mathbf{8 0}$ | $-80,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| ---: | :--- | :--- |
| $\mathbf{1 0 0}$ | $-100,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{1 2 5}$ | $-125,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{1 6 0}$ | $-159,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{2 0 0}$ | $-200,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{2 5 0}$ | $-250,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{3 1 5}$ | $-314,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{4 0 0}$ | $-397,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ |
| $\mathbf{4 7 5}$ | $-474,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ (w/o Function diagram) |
| $\mathbf{5 2 5}$ | $-522,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ (w/o Function diagram) |
| $\mathbf{5 6 5}$ | $-564,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ (w/o Function diagram) |
| $\mathbf{7 1 5}$ | $-715,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ (w/o Function diagram) |

Pos. 4. Shaft Extensions*

- $\varnothing 32$ straight, Parallel key A10x8×45 DIN6885 ø11/4" straight, Parallel key $f_{6} " x f_{16}{ }^{\prime \prime} \times 1 / 4$ " BS46 - $\varnothing 35$ tapered 1:10, Parallel key B6x6x20 DIN6885 $\varnothing 34,85$ p.t.o. DIN 9611 Form 1
『11/4" splined 14T ANSI B92.1-1976
Pos. 5-Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)

Pos. 6 - Actuating Direction**

\mathbf{R}	- Right
\mathbf{L}	- Left

Pos. 7- Speed Monitoring
omit - none

T	- with tacho connection fonly for side ports)
RS-P	- with speed sensor (PNP pull-down resistor)
RS-N	-with speed sensor (NPN pull-up resistor)

Pos. 8 - Special Features (see Specification data-page OS - 04)
omit - none

LL	-Low Leakage
LSV	- Low Speed Valve

Pos. 9 - Rotation
omit - Standard Rotation
\mathbf{R} - Reverse Rotation
Pos.10-Option (Paint) ${ }^{* * *}$
omit - no Paint

P	- Painted
PC	- Corrosion Protected Paint

Pos. 11 - Design Series
omit - Factory specified

NOTES:

* The permissible output torque for shafts must be not exceeded!
** Only for OSB
*** Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

HYDRAULIC MOTORS OSY

OSY is the new hydraulic motor in a family of "disc valve" series which has dimensions and mounting data the same as at hydraulic motors type OS.

This motor is described with 15 $\div 20 \%$ hidger technical data-max. Torque and max. Pressure drop, thereby higher power. This makes it suitable for vehicles with greater loads and speed drop.

CONTENTS

Specification data OSY-02 $\div 03$
Function diagrams OSY-04 $\div 06$
Dimensions and mounting OS-10-11
Wheel motor OS-12
Shaft extensions OS-13
Permissible shaft loads OS-14
Dimensions and mounting-OSYS, VOSY-07
Internal Spline data OSY-08
Order code .. OSY-08

OPTIONS

* Model- Disc valve, roll-gerotor
»Flange and wheel mount;
*Short motor;
*Side and rear ports
* Shafts- straight, splined and tapered;
\% Other special features.

GENERAL

Displacement, $\left[\mathrm{cm}^{3} / \mathrm{rev}.\right]$	$159,7 \div 397$
Max. Speed, [RPM]	$470 \div 185$
Max. Torque, [daNm]	$46,1 \div 90$
Max. Output, [kW]	$11 \div 19,5$
Max. Pressure Drop, [bar]	$205 \div 160$
Max. Oil Flow, [1/min]	75
Min. Speed, [RPM]	$8 \div 5$
Permissible Shaft Loads, [daN]	$\mathrm{P}_{\text {rad }}=1500 ; \mathrm{P}_{\mathrm{a}}=500$
Pressure fluid	Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)
Temperature range, $\quad\left[{ }^{\circ} \mathrm{C}\right]$	$-30 \div 90$
Optimal Viscosity range, $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$20 \div 75$
Filtration	ISO code 20/16 (Min. recommended fluid filtration of 25 micron)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathrm{mm}^{2} / \mathrm{s}\right)$	Oil flow in droin line $(1 / \mathrm{min})$
140	20	1,5
	35	1
210	20	3
	35	2

SPECIFICATION DATA FOR OSY

Type		$\begin{aligned} & \text { OSY } \\ & 160 \end{aligned}$	$\begin{aligned} & \text { OSY } \\ & 200 \end{aligned}$	$\begin{aligned} & \text { OSY } \\ & 250 \end{aligned}$	$\begin{gathered} \text { OSY } \\ 315 \end{gathered}$	$\begin{aligned} & \text { OSY } \\ & 400 \end{aligned}$
Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}.\right]$		159,7	200	250	314,9	397
Max. Speed, [RPM]	cont.	470	375	300	240	185
	Int.*	560	450	360	285	225
Max. Torque [daNm]	cont.	46,1	58,0	72,5	92,2	90,0
	Int.*	51,5	64,5	80,6	96,0	97,0
Max. Output [kW]	cont.	19,5	19,5	18,5	16	11,0
	int.*	24,0	24,0	23	17,5	12
Max. Pressure Drop [bar]	cont.	205	205	205	205	160
	Int.*	225	225	225	220	175
Max. Oil Flow [I/min]	cont.	75	75	75	75	75
	Int.*	90	90	90	90	90
Max. Inlet Pressure [bar]	cont.	225	225	225	225	225
	Int. ${ }^{\text {a }}$	250	250	250	250	250
Max. Return Pressure without Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	100	100	100	100	100
	cont. 100-300 RPM	50	50	50	50	50
	cont. >300 RPM	20	20	-	-	-
	Int.* 0-max. RPM	100	100	100	100	100
Max. Return Pressure with Drain Line, [bar]	cont.	140	140	140	140	140
	Int.*	175	175	175	175	175
Max. Starting Pressure with Unloaded Shaft, [bar]		8	8	8	8	8
Min. Starting Torque [daNm]	at max. press, drop cont.	36,9	46,2	58,0	73,8	72,0
	at max. press. drop Int.*	40,5	50,7	63,6	79,2	78,7
Min. Speed**, [RPM]		8	6	6	5	5
Weight, [kg] For rear ports: $+0,400 \mathrm{~kg}$	OSYF	10,8	11,2	11,7	12,4	13,3
	OSYW	11,3	11,7	12,2	12,9	13,8
	OSYQ	11,2	11,6	12,1	12,8	13,7

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
** For speeds of 5 RPM lower than given, consult factory or your regional manager.

1) Intermittent speed and intermittent pressure must not occur simultaneously.
2) Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3) Recommend using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials.
4) Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
5) Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6) To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

SPECIFICATION DATA for OSY...LSV

Low Speed Valve (LSV) "LSV" Series hydraulic motors have been designed to operate with normal pressure drop and to ensure smooth run at low speed (up to 200 min), as the best security for operation is guaranteed at frequency of rotation $20 \div 50 \mathrm{~min}$. They have an increased starting pressure drop and are not recommended for using at pressure less than 40 bars.

Look at specification data for hydraulic motors standard version. The modification concerns only the following parameters : maximum speed, maximum output, maximum Oil flow and maximum starting pressure.

Type		OSY 160	OSY 200	OSY 250	osy 315	OSY 400
Max. Speed,	Cont	200	200	200	200	85
[RPM]	lint ${ }^{\text {a }}$	250	250	250	250	225
Max. Output	Cont	8,0	8,0	8,8	10,6	9,5
[kW]	Int:	12,2	12,4	13,4	15,0	12,8
Max. Oil Flow	Cant	32	40	50	65	75
[$1 / \mathrm{min}$]	Int ${ }^{\text {c }}$	40	50	62,5	80	90
Max. Starting Pressure with Unloaded Shaft, [bar]		15	15	15	15	15

SPECIFICATION DATA for OSY...LL

Low Leakage (LL) "LL" Series hydraulic motors have been designed to operate at the whole standard range of working conditions (pressure drop and frequency of rotation), but with considerable decreased volumetric losses in the drainage ports. Their main purpose is to operate as series-connected motors in hydraulic systems.

For this version is permissible decreasing of the maximal torque with up to 5% (at middle speed) and up to 10% (at high speed) in comparison to the standard versions of motors.

Look at specification data for hydraulic motors standard version. The modification concerns only the parameters: maximum torque, maximum output, minimum starting torque.

Type		OSY 160	OSY 200	OSY 250	OSY 315	OSY 400
Max. Torque	Cont.	43,8	55, 1	68,8	87,6	85,5
[daNm]	Int. ${ }^{\text {* }}$	48,9	61,3	76,6	91,2	92,2
Max. Output	Cont.	17,6	17,6	16,7	14,7	10,0
[kW]	Int.*	21,8	21,8	20,7	15,8	10,9
Min. Starting Torque	Cont.	35,9	45,1	56,4	71,8	70,2
[daNm]	Int.*	39,6	49.7	62,0	73,9	74,7

FUNCTION DIAGRAMS

OSY 160

The function diagrams data was collected at back pressure $5 \div 10$ bar
and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

osY 315

FUNCTION DIAGRAMS
OSY 400

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

The dimensions, mounting data, shaft extensions and permissible shaft loads are the same as at hydraulic motors type OS except following below.

DIMENSIONS OF THE ATTACHED COMPONENT

F: Oil circulation hole
G: Internal drain channel
H: Hardened stop plate I: O-Ring $100 \times 3 \mathrm{~mm}$

For OSYS

J: $4 \times \mathrm{M} 10-16 \mathrm{~mm}$ depth (for OSS)
N : Needle bearing $1 \frac{3}{\mathrm{~g}}$ " $\times 13 / 4^{\prime \prime}$
T: Drain connection G1/4 or M14×1,5

DRAIN GONNECTION

A drain line ought to be used when pressure in the return line can exceed the permissible pressure. It can be connected:

- For OSYS at the drain port of the motor;
- For OSYV at the drain connection of the attached component. The maximum pressure in the drain line is limited by the attached component and its shaft seal.

The drain line must be possible for oil to flow freely between motor and attached component and must be led to the tank. The maximum pressure in the drain line is limited by the attached component and its seal.

Standard 12 DP 10/20 ANSI 892.1-1976, class 5
[$m=2.54$; corrected x. $m=+0,4$]

Fillet Root Side Fit		mm
Number of Teeth	z	12
Diametral Pitch	DP	$10 / 20$
Pressure Angle		30°
Pitch Did.	D	30,48
Major Dia.	Dri	$33,2^{+0,4}$
Minor Dia.	Di	$27,8^{+0,1}$
Space Width [Circular]	Lo	$4,45^{+0,07}$
Fillet Radius	Rmin	0,2
Mox. Measurement between Pin	L	$22,72^{+0,17}$
Pin Dia.	d	$5 \pm 0,001$

Above are when hardened

Hardering Specification:
$H R C 60 \pm 2$
Effective case depth (HRC 52) $0,7 \pm 0,2 \mathrm{~mm}$ Material: 20 MoCr4 DIN 17210 or better

ORDER CODE

	2	3	4	5	6	7	8		
OSY									

Pos. 1 - Mounting Flange

omit - SAE A mount, four holes

\mathbf{A}	- SAE A mount, two holes
\mathbf{F}	- Magneto mount, four holes
\mathbf{Q}	- - Square mount, four holes
\mathbf{S}	- Short mount
\mathbf{V}	-
\mathbf{W}	Very short mount

Pos. 2 - Port type

omit - Side ports
E - Rear ports

Pos.3. Displacement code

160	$-159,7\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
200	$-200,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
250	$-250,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
315	$-314,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$-397,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos. 5. Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)
Pos. 6 - Special Features (see Specification data page OSY-03)
omit - none

LL	-Low Leakage
LSV	- Low Speed Valve

Pos. 7 - Rotation	
omit	- Standard Rotation
R	- Reverse Rotation

Pos. 8- Option (Paint) **

| omit - no Paint
 P - Painted
 PC - Corrosion Protected Paint |
| :--- | :--- |

Pos. 9 - Design Series
omit - Factory specified

Pos. 4 Shaft Extensions*

C	$-\varnothing 32$ straight, Parallel key A10×8×45 DIN6885
K	$-\varnothing 35$ tapered $1: 10$, Parallel key B6×6×20 DIN6885
SL	$-\varnothing 34,85$ p.t.o. DIN 9611 Form 1
SH	$-\propto 11 / 4^{\prime \prime}$ splined 14T ANSI B92.1-1976

NOTES:

* The permissible output torque for shafts must be not exceeded!
** Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

APPLICATION
» Conveyors;

* Metal working machines;
» Machines for agriculture;
» Road building machines;
* Mining machinery;
* Food industries;
" Special vehicles;

*) Plastic and rubber machinery etc.

CONTENTS

Specification data
OT-02
Function diagrams OT-03 $\div 05$
Dimensions and mountingOT-06
Shaft extensions OT-07
Dimensions and mounting-OTS, V OT-08 $\div 09$
Internal Spline dataOT-10
Permissible shaft loads OT-10
Tacho connection OT-13
Order code OT-13

OPTIONS

* Model: Disc valve, roll-gerotor
* Flange with wheel mount;
\# Short motor;
» Tacho and speed sensor connection;
*Side and rear ports;
* Shafts: straight, splined and tapered;
» Metric and BSPP ports;
* Other special features.

GENERAL

Displacement, $\quad\left[\mathrm{cm}^{3} / \mathrm{rev}\right.$.]	$161,1 \div 725$
Max. Speed, [RPM]	$625 \div 175$
Max. Torque, [daNm]	$47 \div 125$
Max, Output, [kW]	$20,2 \div 33,5$
Max. Pressure Drop, [bar]	$200 \div 115$
Max. Oil Flow, [l/min]	$100 \div 125$
Min. Speed, [RPM]	$10 \div 5$
Permissible Shaft Loads, [daN]	$P_{\text {rad }}=1700 ; P_{a}=1000$
Pressure fluid	Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)
Temperature range, [$\left.{ }^{\circ} \mathrm{C}\right]$	$-30 \div 90$
Optimal Viscosity range, $\left[\mathrm{mm}^{2} / \mathrm{s}\right]$	$20 \div 75$
Filtration	ISO code 20/16 (Min. recommended fluid filtration of 25 micron)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathbf{m m}^{2} / \mathbf{s}\right)$	Oil flow in drain line (//min)
140	20	7,5
	35	1
270	20	3
	35	2

Pressure Losses

SPECIFICATION DATA

Type		$\begin{gathered} \text { OT } \\ 160 \end{gathered}$	$\begin{gathered} \text { OT } \\ 200 \end{gathered}$	$\begin{aligned} & \text { OT } \\ & 250 \end{aligned}$	$\begin{array}{r} \text { OT } \\ 315 \end{array}$	$\begin{gathered} \text { OT } \\ 400 \end{gathered}$	$\begin{aligned} & \text { OT } \\ & 500 \end{aligned}$	$\begin{aligned} & \text { OT } \\ & 630 \end{aligned}$	$\begin{array}{r} \text { OT } \\ 725 \end{array}$
Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}.\right]$		161,1	201,4	251,8	326,3	410.9	523,6	612,3	725
Max. Speed, [RPM]	cont.	625	625	500	380	305	240	206	172
	Int.*	780	750	600	460	365	285	247	205
Max. Torque [daNm]	cont.	47	59	73	95	108	122	123	125
	Int.*	56	71	88	114	126	137	138	140
	peak**	66	82	102	133	144	160	161	165
Max. Output [kW]	cont.	26,5	33,5	33,5	33,5	30	26,5	24,3	20,2
	int.*	32	40	40	40	35	30	27,5	26,8
Max. Pressure Drop [bar]	cont.	200	200	200	200	180	160	140	115
	Int.*	240	240	240	240	210	180	160	130
	peak**	280	280	280	280	240	210	190	160
Max. Oil Flow [1/min]	cont.	100	125	125	125	125	125	125	125
	Int.*	125	150	150	150	150	150	151,4	151,4
Max. Inlet Pressure [bar]	cont.	210	210	210	210	210	210	210	210
	Int.*	250	250	250	250	250	250	250	250
	peak**	300	300	300	300	300	300	300	300
Max. Return Pressure without Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	75	75	75	75	75	75	75	75
	cont. 100-300 RPM	40	40	40	40	40	40	40	40
	cont. $>300 \mathrm{RPM}$	20	20	20	20	20	.	-	.
	Int.* 0-max. RPM	75	75	75	75	75	75	75	75
Max. Return Pressure with Drain Line [bar]	cont.	140	140	140	140	140	140	140	140
	Int.*	175	175	175	175	175	175	175	175
	peak**	210	210	210	210	210	210	210	210
Max. Starting Pressure with Unloaded Shaft, [bar]		10	10	10	10	10	10	10	10
Min. Starting Torque [daNm]	at max. press. drop cont.	34	43	53	74	84	95	95	95
	at max. press. drop Int.*	41	52	63	89	97	106	108	110
Min. Speed***, [RPM]		10	9	8	7	6	5	5	5
Weight, [kg]	OT	20	20,5	21	22	23	24	25	26
	OTW	22	22,5	23	24	25	26	27	28
	OTS	15	15,5	16	17	18	19	20	21
	OTV	11	11,5	12	13	14	15	16	17

* Intermittent operation: the permissible values may occur for max. 10\% of every minute.
** Peak load: the permissible values may occur for max. 1% of every minute.
** For speeds of 5 RPM lower than given, consult factory or your regional manager.

1) Intermittent speed and intermittent pressure must not occur simultaneously.
2) Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better
3) Recommend using a premium quality, anti-wear type mineral based hydraulic oil, HLP(DIN51524) or HM(ISO6743/4). If using synthetic fluids consult the factory for alternative seal materials.
4) Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.
5) Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6) To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

FUNCTION DIAGRAMS

OT 160

OT 200

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OT 315

FUNCTION DIAGRAMS

OT 400

OT 500

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

DIMENSIONS AND MOUNTING DATA

| Type | L, mm | Type | L, mm | $\mathrm{L}_{2}, \mathrm{~mm}$ | Type | $\mathrm{L}_{1} \mathrm{~mm}$ | Type | L, mm | $\mathrm{L}_{2}, \mathrm{~mm}$ | ${ }^{*} \mathrm{~L}, \mathrm{~mm}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OT 160 | 190 | OTE 160 | 200 | 140 | OTW 160 | 123 | OTWE 160 | 133 | 73 | 16,5 |
| OT 200 | 195 | OTE 200 | 205 | 145 | OTW 200 | 128 | OTWE 200 | 138 | 78 | 21,5 |
| OT 250 | 201 | OTE 250 | 217 | 157 | OTW 250 | 134 | OTWE 250 | 144 | 84 | 27,8 |
| OT 315 | 271 | OTE 315 | 221 | 161 | OTW 315 | 144 | OTWE 315 | 154 | 94 | 37,0 |
| OT 400 | 221 | OTE 400 | 231 | 171 | OTW 400 | 154 | OTWE 400 | 164 | 704 | 47,5 |
| OT 500 | 235 | OTE 500 | 245 | 185 | OTW 500 | 168 | OTWE 500 | 178 | 178 | 61,5 |
| OT 630 | 242,5 | OTE 630 | 252,5 | 192,5 | OTW 630 | 175,5 | OTWE 630 | 185,5 | 125,5 | 72,5 |
| OT 725 | 260 | OTE 725 | 270 | 210 | OTW 725 | 193 | OTWE 725 | 193 | 143 | 86,5 |

* The width of the gerolor is $3,5 \mathrm{~mm}$ greater than L_{1}.

SHAFT EXTENSIONS

C $-\varnothing 40$ straight, Parallel key A $12 \times 8 \times 70$ DIN 6885
Max. Torque $132,8 \mathrm{daNm}$

K -tapered 1:10, Parallel key B12x8×28 DIN 6885 Max. Torque 210,7 daNm

SH - $11 / 2^{\prime \prime}$ splined 17T DP 12/24 ANSI B92.1-1976 Max. Torque $132,8 \mathrm{daNm}$

SL - 634,85 p.t.o. DIN 9611 Form 1
Max. Torque 77 daNm

DIMENSIONS AND MOUNTING DATA - OTS and OTV

| Type | L, mm | Type | L, mm | $\mathrm{L}_{2}, \mathrm{~mm}$ | Type | L, mm | Type | L, mm | $\mathrm{L}_{2}, \mathrm{~mm}$ | $\mathrm{~L}_{7}, \mathrm{~mm}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OTS 160 | $\mathbf{1 4 6}$ | OTSE 160 | 156 | 96 | OTV 160 | 101 | OTVE 160 | 111 | 51,5 | 16,5 |
| OTS 200 | 151 | OTSE 200 | 167 | 101 | OTV 200 | 106 | OTVE 200 | 116 | 56,5 | 21,5 |
| OTS 250 | 157 | OTSE 250 | 167 | 107 | OTV 250 | 112 | OTVE 250 | 122 | 62,8 | 27,8 |
| OTS 315 | 166 | OTSE 315 | 176 | 116 | OTV 315 | 121 | OTVE 315 | 131 | 72 | 37,0 |
| OTS 400 | 177 | OTSE 400 | 187 | 127 | OTV 400 | 132 | OTVE 400 | 142 | 82,5 | 47,5 |
| OTS 500 | 191 | OTSE 500 | 201 | 142 | OTV 500 | 146 | OTVE 500 | 156 | 96,5 | 61,5 |
| OTS 630 | 198,5 | OTSE 630 | 208,5 | 146,5 | OTV 630 | 153,5 | OTVE 630 | 163,5 | 104 | 72,5 |
| OTS 725 | 216 | OTSE 725 | 226 | 167 | OTV 725 | 171 | OTVE 725 | 181 | 121,5 | 86,5 |

[^7]
DIMENSIONS OF THE ATTACHED COMPONENT

DRAIN CONNECTION

A drain line ought to be used when pressure in the return line can exceed the permissible pressure. It can be connected:

- For OTS at the drain port of the motor;
- For OTV at the drain connection of the attached component. The maximum pressure in the drain line is limited by the attachedcomponent and its shaft seal.

The drain line must be possible for oil to flow freely between motor and attached component and must be led to the tank. The maximum pressure in the drain line is limited by the attachedcomponent and its seal.

INTERNAL SPLINE DATA FOR THE ATTACHED COMPONENT

Standard ANSI B92.1-1976, class 5 .
[$m=2.1166$;corrected $x, m=+1,0$]

Fillet Root Side Fit		mm
Number of Teeth	z	16
Diametral Pitch	DP	$12 / 24$
Pressure Angle		30°
Pitch Dia.	D	33,8656
Major Dia.	Dri	$38,4^{+0,4}$
Minor Dia.	Di	$32,15^{+0,04}$
Space Width [Circular]	Lo	$4,516 \pm 0,037$
Fillet Radius	Rmin	0,5
Max. Measurement between Pin	L	$26,9^{+0,10}$
Pin Dia.	d	$4,835 \pm 0,001$

Hardening Specification:
HRC 60 ± 2
HRC 52
$0,7 \pm 0,2 \mathrm{~mm}$ effective case depth Material 20 MoCr4 DIN 17210 or better

PERMISSIBLE SHAFT LOADS

The output shaft runs in tapered bearings that permit high axial and radial forces. Curve " 1 " shows max. radial shaft load. Any shaft load exceeding the values quoted in the curve will seriously reduce motor life. The two other curves apply to a B10 bearing life of 3000 hours at 200 RPM.

Hydraulic motors with speed sensor type OT...RS

Fer Hydraulic is introducing a hydraulic motor with a new generation of speed sensor. The electric output signal is a standard voltage signal that can be used for regulating the speed of a motor.

The speed is measured by a sensor in accordance with the Hall principle. Signal processing and amplification are performed in the sensor housing. Aconnection is provided in the housing by a Plug connector M12 Series.

This performance is applicable for all motors of OT series. The main technical features correspond to the standard motors series OT.

DIFFERENTIAL HALL SENSOR

Technical data

Output signal

Frequency range
Output
Power supply Current input Current load Ambient Temperature Protection Plug connector Mounting principle Pulses per revolution
3.. 20000 Hz PNP
10... 36 VDC 20 mA (@24 VDC) $500 \mathrm{~mA}\left(@ 24 \mathrm{VDC} ; 24^{\circ} \mathrm{C}\right)$ minus $40 \ldots$ plus $125^{\circ} \mathrm{C}$ IP 67
M12-Series ISO 6149 84

Load max. $: I_{\text {high }}=I_{\text {bw }}<50 \mathrm{~mA}$
No load current, max: 20 mA

Wiring diagram

PNP

NPN

Stik type

43	Terminal No.	Connection
∞	1	$U_{\text {dic }}$.
(.7)	2	No connection
-	3	OV
12	4	Output signal

ORDER CODE

Pos. 1 - Mounting Flange
omit - Square mount, four holes

\mathbf{S}	- Short mount
\mathbf{V}	- Veryshort mount
\mathbf{W}	- Wheel mount

Pos. 2 - Port type
omit - Side ports
E - Rear ports

Pos.3- Displacement code

$\mathbf{1 6 0}$	$-161,1\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 0 0}$	$-201,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-251,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{3 1 5}$	$-326,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{4 0 0}$	$\left.-410,9 \mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{5 0 0}$	$-523,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{6 3 0}$	$-612,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ (without Function diagram)
$\mathbf{7 2 5}$	$-725,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$ (without Function diagram)

Pos.4- Shaft Extensions*
C - $\varnothing 40$ straight, Parallel key A12×8×70 DIN6885
CO - $\varnothing 11 / 2^{"}$ straight, Parallel key ${ }^{3} I_{B}{ }^{\prime \prime} x^{3} I_{B}^{\prime "} \times 21 / 4 " B S 46$
K $-\varnothing 45$ tapered 1:10, Parallel key B12 $\times 8 \times 28$ DIN6885
SL - $\varnothing 34,85$ p.t.o. DIN 9611 Form 1
SH - $\varnothing 11 / 2 "$ splined 17T ANSI B92.1-1976
Pos. 5 - Ports
omit - BSPP (ISO 228)

| M |
| :--- | - Metric (ISO 262)

Pos. 6 - Speed Monitoring

omit - none
T - with tacho connection (only for side ports)
RS-P - with speed sensor (PNP pull-down resistor)
RS-N - with speed sensor (NPN pull-up resistor)

Pos. 8. Rotation
omit - Standard Rotation
R -Reverse Rotation
Pos. 9]- Option (Paint) ${ }^{* *}$
omit - no Paint

- Painted
- Corrosion Protected Paint

Pos. 10 - Design Series
omit - Factory specified

NOTES:

* The permissible output torque for shafts must be not exceeded!
** Color at customer's request.
The hydraulic motors are mangano-phosphatized as standard.

LOW SPEED HIGH TORQUE MOTORS OTM

INTRODUCTION

Fer Hydraulic is now able to offer the new hydraulic motor type OTM, which is based on the well-known OT motor.

This motor is developed for transmission systems with larger pressure drop and higher torque, It's design is remarkable with strengthened inner element and new geroller set.

EXCELLENCE

» High torque and pressure drop;
» High inlet pressure;
» High starting torque;
" Improved efficiency at high pressure drop;
»Smooth operation at low speed.

APPLICATIONS

» Skid Steer Loaders;
" Metal working machines;
» Trenchers;
" Augers;
» Machines for agriculture;
» Road building machines;
» Mine machines;
" Woodworking and sawmill machinery;
» Conveyors etc;
»Special vehicles.

OPTIONS

» Model- Disc valve, orbiting roller;
" Flange with wheel mount;
»Short motor;
» Side and rear ports;
» Shafts- straight, splined and tapered;
» Metric and BSPP ports;
» Other special features.

SPECIFICATION DATA

Code	Displacement [$\left.\mathrm{cm}^{3} / \mathrm{rev}\right]$	Max. Speed [RPM]	Max. Torque [daNm]		Max. Output [kW]		Max. Pressure Drop [bar]		Max. Oil Flow [Ipm]
		cont.	cont.	int*	cont.	in**	cont.	int*	cont.
OTM 200	201,4	625	72	102	41	65	250	350	125
OTM 250	251,8	500	90	128	41	70	250	350	125
OTM 315	326,3	380	116	163	41	70	250	350	125
OTM 400	410,9	305	147	206	41	70	250	350	125
OTM 470	475,0	260	171	215	41	55	250	315	125
OTM 500	523,6	240	172	215	37,5	51	230	280	125
OTM 630	665,0	185	175	215	29	45	185	225	125

[^8]
OUTLINE DIMENSIONS REFERENCE

Type	$\mathrm{L} 1, \mathrm{~mm}$	$\mathrm{~L} 2, \mathrm{~mm}$	$\mathrm{L3}, \mathrm{~mm}$	$\mathrm{~L}, \mathrm{~mm}$	Type	$\mathrm{L} 2, \mathrm{~mm}$	$\mathrm{~L} 3, \mathrm{~mm}$	$\mathrm{~L}, \mathrm{~mm}$
OTM 200	25	163,3	142,3	188	OTMN 200	104,8	83,3	129
OTM 250	31,3	169,6	148,3	194	OTMN 250	112,1	90,1	135
OTM 315	40,5	178,5	157,8	203	OTMM 315	120,3	99,3	144
OTM 400	50	189,3	168,3	214	OTMN 400	130,8	109,8	155
OTM 470	59	197,3	176,3	222	OTMN 470	138,8	117,8	163
OTM 500	65	203,3	182,3	228	OTMN 500	144,8	123,8	169
OTM 660	82,6	220,3	199,9	245	OTMW 660	162,4	$1.41,4$	187

[^9]
SHAFT EXTENSIONS

C. $\sigma 40$ straight, Parallel key A12x8×70 DIN 6885 Max. Torque $132,8 \mathrm{daNm}$

SH -ø1 $1 / 2 / 2$ splined 17T, DP 12/24 ANSI B92.1-1976
Max. Torque $132,8 \mathrm{daNm}$

K -tapered 1:10, Parallel key B12×8x28 DIN 6885 Max. Torque $210,7 \mathrm{daNm}$

∇-Motor Mounting Surface

PERMISSIBLE SHAFT LOADS
The curves apply to a B_{10} bearing life (ISO281) of 2000 hours at 200 RPM.

Type	L1, mm	L2, mm	$\mathrm{L} 3, \mathrm{~mm}$	$\mathrm{~L}, \mathrm{~mm}$
OTMV 200	25	106,5	27,8	157
OTMV 250	31,3	112,8	26,5	157
OTMV 315	40,5	122	22,3	167
OTMV 400	50	132,5	27,8	177
OTMV 470	59	140,5	23,8	185
OTMV 500	65	146,5	27,8	197
OTMV 660	82,6	164,7	20,2	209

DIMENSIONS OF THE ATTACHED COMPONENT

F: Oil circulation hole
$\mathrm{J}: 9 \times \mathrm{M} 12-24 \mathrm{~mm}$ depth, $90^{\circ}, \emptyset 110 \pm 0,1$

I: O- Ring $93 \times 1,5 \mathrm{~mm}$
T : Drain connection G1/4

Standard ANSI B92.1-1976, class 5
[$m=2.1166$; corrected $\times . m=+1,0]$

Fillet Root Side Fit		mm
Number of Teeth	z	16
Diametral Pitch	DP	$12 / 24$
Pressure Angle		30°
Pitch Dia.	D	33,8656
Major Dia.	Dri	$38,4^{+0,4}$
Minor Dia.	Di	$32,15^{+0,04}$
Space Width [Circular]	Lo	$4,516 \pm 0,037$
Fillet Radius	Rmin	0,5
Max. Measurement between Pin	L	$26,9^{+0,10}$
Pin Dia.	d	$4,835 \pm 0,001$

Hardening Specification:
HRC 60 ± 2
HRC 52
$0,7 \pm 0,2 \mathrm{~mm}$ effective case depth Material 20 MoCr 4 DIN 17210 or better

ORDER CODE

Pos. 7 - Mounting Flange
omit - Square mount, four

V	- Very short mount
W	- Wheel mount

Pos. 2 -Displacement code

200	$-201,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{2 5 0}$	$-251,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
315	$-326,3\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
400	$-410,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
470	$-475,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
500	$-523,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
660	$-665,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos.3-Shaft Extensions*

| C | $-\varnothing 40$ straight, Parallel key A1 $2 \times 8 \times 70$ DIN6885 |
| :--- | :--- | :--- |
| K | $-\varnothing 45$ tapered $1: 10$, Parallel key B12×8×28 DIN6885 |
| SH | $-\varnothing 11 / 2^{\prime \prime}$ splined 17 T ANSI B92.1-1976 |

NOTES:

*The permissible output torque for shafts must be not exceeded!

* Color at customer's request.

The hydraulic motors are mangano-phosphatized as standard.

HYDRAULIC MOTORS OV

APPLICATION

* Conveyors;
* Metal working machines;
» Machines for agriculture;
» Road building machines;
* Mining machinery;
» Food industries;
" Special vehicles;

*Plastic and rubber machinery etc.

CONTENTS

Specification data OV-02
Function diagrams OV-03 $\div 05$
Permissible shaft loads OV-05
Dimensions and mounting OV-06
Dimensions and mounting- OVS OV-06 $\div 08$
Internal Spline data OV-08
Tacho connection OV-08
Shaft extensions OV-11
Order code OV-11

OPTIONS

* Model- Disc valve, roll-gerotor
» Flange and wheel mount;
* Short motor;
» Tacho and speed sensor connection;
*Side ports;
* Shafts- straight, splined and tapered;
» Metric and BSPP ports;
* Other special features.

GENERAL

Displacement, [$\left.\mathrm{cm}^{2} / \mathrm{rev}.\right]$	$314,5 \div 801,8$
Max. Speed, [RPM]	$510 \div 250$
Max. Torque, [daNm]	$92 \div 188$
Max. Output, [kW]	$42,5 \div 53,5$
Max. Pressure Drop, [bar]	$200 \div 160$
Max. Oil Flow, [1/min]	$160 \div 200$
Min. Speed, [RPM]	$10 \div 5$
Permissible Shaft Loads, [daN]	$\mathrm{P}_{\text {rod }}=2800 ; \mathrm{P}_{\mathrm{od}}=1500$
Pressure fluid	Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)
Temperature range, [$\left.{ }^{\circ} \mathrm{C}\right]$	$-30 \div 90$
Optimal Viscosity range, [$\mathrm{mm}^{2} / \mathrm{s}$]	$20 \div 75$
Filtration	ISO code 20/16 (Min. recommended fluid filtration of 25 micron)

Oil flow in drain line

Pressure drop (bar)	Viscosity $\left(\mathbf{m m}^{2} / \mathbf{s}\right)$	Oil flow in drain line (I/min)
140	20	3
	35	2
210	20	6
	35	4

Pressure Losses

SPECIFICATION DATA

Type		$\begin{aligned} & \hline \text { OV } \\ & 315 \end{aligned}$	$\begin{gathered} \hline \text { OV } \\ 400 \end{gathered}$	$\begin{aligned} & \hline \text { OV } \\ & 500 \end{aligned}$	$\begin{aligned} & \text { OV } \\ & 630 \end{aligned}$	$\begin{aligned} & \hline \text { OV } \\ & 800 \end{aligned}$
Displacement [$\mathrm{cm}^{3} / \mathrm{rev}$.]		314.5	400,9	499,6	629,1	801,8
Max. Speed, [RPM]	cont.	510	500	400	315	250
	Int.*	630	600	480	380	300
Max. Torque [daNm]	cont.	92	118	146	166	188
	Int.*	111	141	176	194	211
	peak**	129	164	205	221	247
Max. Output [kW]	cont.	42,5	53,5	53,5	48	42,5
	int.*	51	64	64	56	48
Max. Pressure Drop [bar]	cont.	200	200	200	180	160
	Int.*	240	240	240	210	180
	peak**	280	280	280	240	210
Max. Oil Flow [$1 / \mathrm{min}$]	cont.	160	200	200	200	200
	Int.*	200	240	240	240	240
Max. Inlet Pressure [bar]	cont.	210	210	210	210	210
	Int.*	250	250	250	250	250
	peak**	300	300	300	300	300
Max. Return Pressure without Drain Line or Max. Pressure in Drain Line, [bar]	cont. 0-100 RPM	60	60	60	60	60
	cont. 100-300 RPM	30	30	30	30	30
	cont. >300 RPM	20	20	20	20	20
	Int.* 0-max. RPM	75	75	75	75	75
Max. Return Pressure with Drain Line [bar]	cont.	140	140	140	140	140
	Int.*	175	175	175	175	175
	peak**	210	210	210	210	210
Max. Starting Pressure with Unloaded Shaft, [bar]		8	8	8	8	8
Min. Starting Torque [daNm]	at max. press. drop cont.	71	91	113	133	151
	at max. press. drop Int.*	85	109	136	155	170
Min. Speed***, [RPM]		10	9	8	6	5
Weight, [kg]	OV	31,8	32,6	33,5	34,9	36,5
	OVW	32,4	33,2	34, 1	35,5	37,1
	OVS	22,7	23,5	24,4	25,6	27,7

* Intermittent operation: the permissible values may occur for max. 10% of every minute.
** Peak load: the permissible values may occur for max. 1% of every minute.
** For speeds of 5 RPM lower than given, consult factory or your regional manager.

1) Intermittent speed and intermittent pressure must not occur simultaneously.
2) Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
3) Recommend using a premium quality, anti-wear type mineral based hydraulic oil, HLP(DIN51524) or HM(ISO6743/4). If using synthetic fluids consult the factory for alternative seal materials.
4) Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.
5) Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
6) To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.

FUNCTION DIAGRAMS

OV 315

OV 400

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

OV 630

The function diagrams data was collected at back pressure $5 \div 10$ bar and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

FUNCTION DIAGRAMS

The function diagrams data was collected at back pressure $5 \div 10$ bar
and oil with viscosity of $32 \mathrm{~mm}^{2} / \mathrm{s}$ at $50^{\circ} \mathrm{C}$.

Mounting

Side Ports

Standard Rotation

Viewed from Shaft End
Port A Pressurized- CW
Port B Pressurized - CCW
Reverse Rotation
Viewed from Shaft End PortA Pressurized-CCW Port B Pressurized - CW

C: $4 x M 12-12 \mathrm{~mm}$ depth
$\mathrm{P}_{(\mathrm{A}, \mathrm{B})}: 2 \times \mathrm{G} 1-20 \mathrm{~mm}$ depth
T: G $1 / 4-12 \mathrm{~mm}$ depth

Type	L, mm	$\mathrm{L}_{2}, \mathrm{~mm}$	Type	L, mm	$\mathrm{L}_{2}, \mathrm{~mm}$	$\mathrm{~L}_{1}, \mathrm{~mm}$
OV 315	214,5	160	OVW 315	146	92	22,0
OV 400	221,5	167	OVW 400	153	99	29,0
OV 500	229,5	175	OVW 500	161	107	37,0
OV 630	240,0	186	OVW 630	172	118	47,5
OV 800	254,0	200	OVW 800	185	132	61,5

* The width of the gerolor is $3,5 \mathrm{~mm}$ greater than L_{1}.

DIMENSIONS AND MOUNTING

S Short Mount

C: $4 \mathrm{xM} 12-12 \mathrm{~mm}$ depth
$\mathbf{P}_{(\mathrm{A}, \mathrm{B})}: 2 \times G 1-20 \mathrm{~mm}$ depth
T: G $1 / 4-12 \mathrm{~mm}$ depth

Type	L, mm	${ }^{\mathrm{L}} \mathrm{L}_{1}, \mathrm{~mm}$	$\mathrm{~L}_{2}, \mathrm{~mm}$
OVS 315	171	22,0	117
OVS $\mathbf{4 0 0}$	179	29,0	124
OVS $\mathbf{5 0 0}$	186	37,0	132
OVS 630	197	47,5	143
OVS 800	211	61,5	157

* The width of the gerolor is $3,5 \mathrm{~mm}$ greater than L_{1}.

Standard Rotation
Viewed from Shaft End
Port A Pressurized - CW
Port B Pressurized-CCW

Reverse Rotation

Viewed from Shaft End
Port A Pressurized-CCW
Port B Pressurized-CW

DIMENSIONS OF THE ATTACHED COMPONENT

DRAIN CONNECTION

A drain line ought to be used when pressure in the return line can exceed the permissible pressure. It can be connected for OVS at the drain port of the motor.

The drain line must be possible for oil to flow freely between motor and attached component and must be led to the tank. The maximum pressure in the drain line is limited by the attachedcomponent and its seal.

INTERNAL SPLINE DATA FOR THE ATTACHED COMPONENT

Standard ANSI B92.1-1976, class 5
[$m=2.54$;corrected x. $m=+1,0$]

Fillet Root Side Fit		mm
Number of Teeth	z	16
Diametral Pitch	DP	$10 / 20$
Pressure Angle		30°
Pitch Dia.	D	40,640
Major Dia.	Dri	$45,2^{+0,4}$
Minor Dia.	Di	$38,5^{+0,039}$
Space Width [Circular]	Lo	$5,18 \pm 0,037$
Fillet Radius	Rmin	0,4
Max. Measurement between Pin	L	$32,47^{+0,15}$
Pin Dia.	d	$5,5 \pm 0,001$

Hardening Specification:
HRC 60 ± 2
HRC 52
$0,7 \pm 0,2 \mathrm{~mm}$ effective case depth Material 20 MoCr4 DIN 17210 or better

MOTORS WITH TACHO CONNECTION - Option "T"

Hydraulic motors with speed sensor type OV...RS

Fer Hydraulic is introducing hydraulic motor with a new generation of speed sensor. The electric output signal is a standard voltage signal that can be used for regulating the speed of a motor.

The speed is measured by a sensor in accordance with the Hall principle. Signal processing and amplification are performed in the sensor housing. Aconnection is provided in the housing by a Plug connector M12 Series.

This performance is applicable for all motors of OV series. The main technical features correspond to the standard motors series OV.

DIFFERENTIAL HALL SENSOR

Technical data

Output signal

Frequency range
Output Power supply Current input Current load Ambient Temperature Protection Plug connector Mounting principle Pulses per revolution
3.. 20000 Hz PNP
10... 36 VDC 20 mA (@24 VDC) $500 \mathrm{~mA}\left(@ 24\right.$ VDC; $24^{\circ} \mathrm{C}$) minus $40 \ldots$ plus $125^{\circ} \mathrm{C}$ IP 67 M12-Series ISO 6149 102

Load max. $. I_{\text {high }}=I_{\text {kw }}<50 \mathrm{~mA}$
No load current, max: 20 mA

Wiring diagram

PNP

NPN

Stik type

Terminal No.	Connection	
1	$U_{\text {d. }}$	
2	2	No connection
	2	OV
	4	Output signal

SHAFT EXTENSIONS

C. -650 straight, Parallel key A14×9×70 DIN 6885

SH - $62 \frac{1}{8}$ "splined, 16 DP 8/16 ANSI B92.1-1976

∇ - Motor Mounting Surface

CO - $\curvearrowleft 21 / 4^{\prime \prime}[57,15]$ straight, Parallel key $1 / 2^{\prime \prime} x^{1 / 2} 2^{\prime \prime} 2^{1 / 4^{\prime \prime}}$ BS46

K -tapered 1:10, Parallel key B16x10x32 DIN 6885

ORDER CODE

	1	2	3	4	5	6	7	8
OV								

Pos. 1 - Mounting Flange

omit - Square mount, four holes

\mathbf{S}	- Short mount
\mathbf{W}^{*}	- Wheel mount

Pos.2-Displacement code

$\mathbf{3 1 5}$	$-314,5\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
400	$-400,9\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{5 0 0}$	$-499,6\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{6 3 0}$	$-629,1\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
$\mathbf{8 0 0}$	$-801,8\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos. 3 - Shaft extensions**

Pos. 4- Speed Monitoring	
omit	- none
T	- with tacho connection
RS-P	- with speed sensor (PNP pull-down resistor)
RS-N	- with speed sensor (NPN pull-up resistor)
Pos. 5 - Special Features	
omit - none	
LL	-Low Leakage
LSV	- Low Speed Valve
Pos. 6- Rotation	
omit - Standard Rotation	
R - Reverse Rotation	
Pos. 7. Option (Paint) ${ }^{\text {** }}$	
omit - no Paint	
P -Painted	
PC	- Corrosion Protected Paint
Pos. 8 - Design Series	
omit	Factory specified

NOTES:

* The motor type OVW is only available with shaft type $\mathbf{C , C O}, \mathrm{K}$
** The permissible output torque for shafts must be not exceeded!
** Color at customer's request.
The hydraulic motors are mangano- phosphatized as standard.

Hydraulic motors with Dual shaft type ORB160

INTRODUCTION

Fer Hydraulic introduces a new series of hydraulic motors, type ORB with two shafts, which are based on well-known OR motors.

A T B

OPTIONS

" Model-Spool valve, roll-gerotor;
" Dual shaft;
" Oval flange;
" Side port;
) Gaights hafts;
" BSPP ports;
") Other special features

APPLICATION

* Conveyors;
» Feeding mechanism of robots and manipulators;
》Metal working machines;
* Textile machines;
» Machines for agriculture;
»Food industries;
» Mining machinery, etc.

SPECIFICATION DATA

Type		$\begin{gathered} \text { ORB } \\ 160 \end{gathered}$	ORB $160 \mathrm{LSV}$
Displacement, $\mathrm{cm}^{3} / \mathrm{rev}$.		159,6	159,6
Max. Speed,	cont,	375	200
RPM	int.	470	300
Max. Torque, daNm	cont.	29	29
	int.	35	35
Max. Torque "A"Shaft, daNm	cont.	20	20
	int.	23	23
Max. Torque "B"Shaft, daNm	cont.	20	20
	int.	23	23
Max. Pressure Drop, bar	cont.	150	150
	int.	190	190
Max. Oil Flow, Ipm	cont.	60	32
	int.	75	48
Max. Return Pressure without Drain Line, bar	cont. Q-100 RPM	75	75
	cont. 100-200 RPM	40	40
	cont. 200-500 RPM	20	20
	int. 0 - max RPM	75	75

PERMISSIBLE SHAFT LOADS

The load diagrams are valid for an average bearings life of 1600 hrs at 200 r.p.m. with mineral base lubricating containing antiwear additives (ref. ISO 281 (3.3) standard).
The "A" curve gives the maximum static load affordable by the bearings.
The "B" curve gives the radial load top limit without axial load of 200 daN

Po Max=210daN

MOTOR APPLICATION

VEHICLE DRIVE CALCULATIONS

1. Motorspeed:n, $\left[\mathrm{min}^{-1}\right]$

$$
\mathrm{n}=\frac{2,65 \times v \times i}{\mathrm{R}}
$$

v -vehicle speed, $[\mathrm{km} / \mathrm{h}]$;
R-wheel rolling radius, [m];
i- gear ratio between motor and wheels.
If no gearbox, use $\mathrm{i}=1$.

2.Rolling resistance: RR, [daN]

The resistance force resulted in wheels contact with different surfaces:

$$
R R=G \times \rho
$$

G- total weight loaded on vehicle, [daN];
ρ-rolling resistance coefficient (Table 1).
Table 1

Rolling resistance coefficient In case of rubber tire rolling on different surfaces	
Surface	ρ
Concrete-faulless	0,010
Concrete-good	0,015
Concrete-bad	0,020
Asphalt-faultess	0,012
Asphalt- good	0,017
Asphalt-bad	0,022
Macadam- faultess	0,015
Macadam-good	0,022
Macadam-bad	0,037
Snow- 5 cm	0,025
Snow- 10 cm	0,037
Polluted covering-smooth	0,025
Polluted covering-sandy	0,040
Mud	0,037 $\div 0,150$
Sand-Gravel	0,060 $\div 0,150$
Sand- loose	0,160 $-0,300$

3.Grade resistance: GR, [daN]

$$
\mathrm{GR}=\mathrm{G} \times(\sin \alpha+\rho \times \cos \alpha)
$$

α-gradient negotiation angle (Table 2)
Table 2

Grade $\%$	$\boldsymbol{\alpha}$ Degrees	Grade $\%$	\boldsymbol{a} Degrees
1%	$0^{\circ} 35^{\prime}$	12%	$6^{\circ} 5^{\prime}$
2%	$1^{\circ} 9^{\prime}$	15%	$8^{\circ} 31^{\prime}$
5%	$2^{\circ} 51^{\prime}$	20%	$11^{\circ} 19$
6%	$3^{\circ} 26^{\prime}$	25%	$14^{\circ} 3$
8%	$4^{\circ} 35^{\prime}$	32%	18°
10%	$5^{\circ} 43^{\prime}$	60%	31°

4.Accelerate force: FA, [daN]

Force FA necessary for acceleration from 0 to maximum speed vand time t can be calculated with a formula:

$$
\mathrm{FA}=\frac{\mathrm{v} \times \mathrm{G}}{3,6 \times t},[\mathrm{daN}]
$$

FA- accelerate force, [daN];
t-time, [s].
5.Tractive effort: DP, [daN]

Tractive effort DP is the additional force of trailer. This value will be established as follows:
-according to constructor's assessment;
-as calculating forces in items 2, 3 and 4 of trailer; the calculated sum corresponds to the tractive effort requested.

6. Total tractive effort: TE, [daN]

Total tractive effort TE is total effort necessary for vehicle motion; that the sum of forces calculated in items from 2 to 5 and increased with 10% because of air resistance.

$$
T E=1,1 \times(R R+G R+F A+D P)
$$

$R R$ - force acquired to overcome the rolling resistance;
GR- force acquired to slope upwards;
FA. force acquired to accelerate (acceleration force);
DP- additional tractive effort (trailer).

7.Motor Torque:M, [daNm]

Necessary torquemoment for every hydraulic motor:

$$
M=\frac{T E \times R}{N \times i \times \boldsymbol{\eta}_{M}}
$$

N - motor numbers;
η_{m} - mechanical gear efficiency (if it is available).
8. Cohesion between tire and road covering: $\mathrm{M}_{\mathrm{w},}$ [daNm]

To avoid wheel slipping, it should be observed the following condition $M_{W}>M$
f - frictional factor;
G_{w} - total weight over the wheels, [daN].

Table 3

Surface	Frictional factor \mathbf{t}
Steel on steel	$0,15 \div 0,20$
Rubber tire on polluted surface	$0,5 \div 0,7$
Rubber tire on asphalt	$0,8 \div 1,0$
Rubber fire on concrete	$0,8 \div 1,0$
Rubber tire on grass	0,4

9. Radial motor loading: Prod, [daN]

When motor is used for vehicle motion with wheels mounted directly on motor shaft, the total radial loading of motor shaft Prod is a sum of motion force and weight force acting on one wheel.

Gw - Weight held by wheel;
Prod - Total radial loading of motor shaft;
M/R-Motion force.

$P_{\text {rod }}=\sqrt{G_{w}^{2}+\left(\frac{M}{R}\right)^{2}}$

In accordance with calculated loadings the suitable motor from the catalogue is selected.

DRAINAGE SPACE AND DRAINAGE PRESSURE

Advantages in oil drainage from drain space: Cleaning; Cooling and Seal lifetime prolonging.

HYDRAULIC DISC BRAKES AND BRAKE-MOTOR UNITS

INDEX
> DISC BRAKES

- MTF SERIES MTF-01-03
- ELB, LBV SERIES ELB-01-11
INTEGRATED BRAKE-MOTOR UNITS
- SV, TV SERIES SV,TV 01-03
- PW SERIES PW-01-02
- TW SERIES TW-01-02

HYDRAULIC DISC BRAKE MTF Series

MTF brakes are multiple disc negative brakes (normaly closed), to be coupled with SAE A 2 holes orbit motors.
Normaly used for static braking as parking brakes or as emergency brakes in low power application such as aerial platforms, cranes, mini escavators, whiches, ... Applying the correct pressure al disc are realeased and motors can freely be driven. The brake can be used dinamicaly only under careful control of the temperature and only for short time.

TECHNICAL DATA

Type		MTF/20	MTF/30	MTF/40	MTF/50	MTF/60
Static Torque	Nm	200	300	400	500	600
Dynamic Torque	Nm	140	210	280	350	420
Max N $^{\circ}$ dynamic braking per hour	50	40	30	20	15	
Releasing Pressure	bar	18	18	25	25	30
Max inlet pressure	bar	250	250	250	250	250

Static torque with 0 bar pressure.
Use oil with viscosity grade within 30-60 Cst range.
Oil quantity 3 cc .

Shaft loads for 2000 working hour

DIMENSIONS

INPUT SHAFTS

ORDER CODE

Pas. 1 - Brake Type	Pos. 4 - Output Shaft Type
Pos.2-Static Torque [Nm]	CB - 32 mm cilindrical Shaft
20-200 Nm	C - 25 mm cilindrical Shaft
20-200 Nm	SH - 1"6B SAE Splined Shaft
$30-300 \mathrm{Nm}$	SU - 26x32 UNI221 Splined Shaft
$40-400 \mathrm{Nm}$	
$50-500 \mathrm{Nm}$	
60-600 Nm	

Pas.3-Inlet Shaft Type

SH	$-1 " 6 B$ SAE Splined
C	-25 mm cilindrical Shaft

APPLICATION

" Heavy Duty machinery;
" Wheel drives;
" Material handling;
» Mining;
" Agriculture;
" Conveyors;
*Door openers and swing drives etc.

GENERAL

Pressure fluid	Mineral based- HLP(DIN 51524) or HM(ISO 6743/4)
Temperature range, ${ }^{\circ} \mathrm{C}$	$-30 \div 90$
Viscosity range, $\mathrm{mm}^{2} / \mathrm{s}$	$20 \div 75$
Filtration	ISO code $20 / 16$ (nominal filtration of 25 micron)
Maintenance	Changed after the first $50-100 \mathrm{~h}$, then after every $500-1500 \mathrm{~h}$.

CONTENTS

Hydraulic Disc Brake for OP, OR and OS Motors type ELB/288 ... ELB LBV-02*03	
Hydraulic Disc Brake for OSS and OSV type ELB(LBV)/289 \qquad ELB LBV-04	
Hydraulic Disc Brake for OSS and OSV type ELB(LBV)/290	LB LBV-05
Specification data for ELB(LBV)/289, 290	LB LBV-06
Load curve for ELB(LBV)/289, 290	06
Output Shafts for ELB(LBV)/289, 290	06
Internal Spline data	B LBV-07
Order code for ELB(LBV)/289, 290	ELB LBV-07
Hydraulic Disc Brake for OTS and OTV type ELB(LBV)/314	LB LBV-08
Hydraulic Disc Brake for OTS and OTV type ELB(LBV)/315	09
Specification data for ELB(LBV)/314, 315	LB LBV-10
Load curve for ELB(LBV)/314, 315	ELB LBV-10
Output Shafts for ELB(LBV)/314, 315	LB LBV-11
Order code for ELB(LBV)/314, 315	ELB LBV-11

ELB

LBV

HYDRAULIC DISC BRAKE FOR FLANGE ATTACHMENT TO OP, OR AND OS HYDRAULIC MOTORS

TYPE ELB/288

C : Brake release Port - $\mathrm{G} 1 / 4,9 \mathrm{~mm}$ depth
D : Drainage tap - $\mathrm{G}^{1 / 4}, 9 \mathrm{~mm}$ depth
∇ - Place for attachment
(tightening torque for bolts M12×30-8.8 DIN 931-7 daNm) $\nabla \nabla$ - Place for attachment

SPECIFICATION DATA

Description ELB/288.	7	14	21	32	43
*Static Torque [daNm]	6-8	13-15	20-22	31-34	41-45
$\begin{aligned} & \text { Opening Pressure } \\ & \text { [bar] }\end{aligned} \quad \min$max	4-5	8-9	12-13	18-20	24-26
	300				
Min. oil quantity for brake releasing [cm^{3}]	7-8				
Oil quantity [$\left.\mathrm{cm}^{3}\right]$	50-120				
Max. Pressure in drain space [bar]	0,5				
Weight [kg]	9				

LOAD CURVE

C

CO

SH

SA. splined B25×22 h9 DIN 5482
Max. Torque 40 daNm

C- 25 straight, Parallel key A8×7×32 DIN 6885 Max. Torque 34 daNm

> CO - $\quad 1$ straight Parallel key $1^{1 / 4} \times x^{1 / 4} \times 1^{1 / 4^{4}} \mathrm{BS} 46$ Max. Torque 34 daNm

SH - splined BS 2059 (SAE 6B) Max. Torque 34 daNm

∇ - Disc Brake Mounting Surface

TYPE ELB/289

TYPE LBV/289

$\frac{\text { INPUT SHAFT }}{\text { see page } 112}$

∇ - Place for attachment
(tightening torque for bolts M10×35-8.8 DIN 912-5 daNm)
$\nabla \nabla$ - Place for attachment

C : Brake release Port - G1/4, 9 mm depth
D, T : Drainage tap - G1/4, 9 mm depth

HYDRAULIC DISC BRAKE FOR FLANGE ATTACHMENT

 TO OSS AND OSV HYDRAULIC MOTORSTYPE ELB/290

TYPE LBV/290

∇ - Place for attachment
(tightening torque for bolts M10x35-8.8 DIN 912-5 daNm)
$\nabla \nabla$ - Place for attachment
C : Brake release Port - G114, 9 mm depth
D, T: Drainage tap - G1⁄4, 9 mm depth

OUTPUT SHAFT EXTENSIONS

CB - 32 straight, Parallel key A10×8×45 DIN6885 Max. Torque 77 daNm

KB-tapered 1:10, Parallel key B6x6x20 DIN6885 Max. Torque 77 daNm

SPECIFICATION DATA

Description ELB/289(290) LBV/289(290)	21	32	43	63
*Static Torque [daNm]	20-22	31-34	41-45	61-64
Opening Pressure min	12-13	18-20	24-26	38-39
[bar] max	300			
Min. oil quantity for brake releasing $\left[\mathrm{cm}^{3}\right]$	7-8			
Oil quantity $\left[\mathrm{cm}^{3}\right]$	50-120			
Max. Pressure in drain space [bar]	5			
Weight .../289(290) [kg]	10(11)			

*Static torque is obtained at working pressure-0 bar.
LOAD CURVE

ELB(LBV) ... 289

ELB(LBV) .../290

INTERNAL SPLINE DATA FOR THE ATTACHED COMPONENT

Standard ANSI B92.1-1976, class 5 [$m=2,1166]$

Fillet Root Side Fit		$\begin{aligned} & \hline \mathrm{ELB}(\mathrm{LB} \mathrm{~V}) / 289 \\ & \mathrm{ELB}(\mathrm{LBY}) / 290 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \mathrm{ELB}(\mathrm{LBV}) / 314 \\ & \mathrm{ELB}(\mathrm{LBV}) / 315 \\ & \hline \end{aligned}$
Number of Teeth	z	12	16
Diametral Pitch	DP	12/24	12/24
Pressure Angle		30°	30°
Pitch Dio.	D [mm]	25,4	33,8656
Major Dia.	Dri [mm]	28,0.0,1	$38,4^{+0,4}$
Minor Dia.	Di [mm]	$23,0^{+0,033}$	$32,15^{+0,06}$
Space Width [Circular]	Lo [mm]	4,308 $\pm 0,020$	4,516 $\pm 0,037$
Fillef Radius	Rmin [mm]	0,2	0,5
Max. Measurement between Pir	L [mm]	$17,62^{+0,15}$	$26,9^{+0,10}$
Pin Dia.	d [mm]	4,835 $\pm 0,001$	4,835 $\pm 0,001$
Corrected	$\mathrm{x} . \mathrm{m}[\mathrm{mm}]$	+0,8	+1,0

ORDER CODE

ELB - Euro Disc Brake
LBV - Disc Brake for very short motor V-OSV

Pos.2	- Design code
$\mathbf{2 8 8}$	- for OP, OR and OS Motors
$\mathbf{2 8 9}$	- for OSS and OSV Motors
$\mathbf{2 9 0}$	- for OSS and OSV Motors (Wheel Mount)

Pos 3 - Input Shaft Hole*

C, $\mathrm{CO}, \mathrm{SH}, \mathrm{CB}, \mathrm{SB}$
Pos. 4 -Static Torque code (See Specification data)

$$
7,14,21,32,43,63
$$

Pos. 6 - Option (Paint) ${ }^{\text {n* }}$

omit	- no Paint
\mathbf{P}	- Painted
PC	- Corrosion Protected Paint

Pos. 7-Design Series

omit - Factory specified

NOTES:

* Used for ELB/288 only (see page ELB LBV-03).
** The permissible output torque for shafts must be not exceeded!
For Max. Torque values see data on page ELB LBV-03 and ELB LBV-06.
** The color is by customer's request.
The Disc Brakes are mangano-phosphatized as standard.

HYDRAULIC DISC BRAKES

FOR FLANGE ATTACHMENT TO OTS AND OTV HYDRAULIC MOTORS

TYPE ELB/314

∇ - Place for attachment
(tightening torque for bolt M12-8.8-8,5 daNm)
C: Brake release Port - $\mathrm{G} 1 / 4,9 \mathrm{~mm}$ depth
$\nabla \nabla$ - Place for attachment
D: Drainage tap - G1/4, 9 mm depth

TYPE LBV/314

∇ - Place for attachment (tightening torque for bolt M14-8.8-14 daNm)
$\nabla \nabla$ - Place for attachment

C: Brake release Port - $G 1 / 4,9 \mathrm{~mm}$ depth
D,T : Drainage tap - $\mathrm{G} 1 / 4,9 \mathrm{~mm}$ depth

HYDRAULIC DISC BRAKES

FOR FLANGE ATTACHMENT TO OTS AND OTV HYDRAULIC MOTORS
TYPE ELB/315

$\frac{\text { INPUT SHAFTS }}{\text { See page } 112}$

∇ - Place for attachment
(tightening torque for bolt M12-8.8-8,5 daNm)
C: Brake release Port - G1/4, 9 mm depth
$\nabla \nabla$ - Place for attachment
D: Drainage tap - G1/4, 9 mm depth

TYPE LBVI315

ק- Place for attachment
(tightening torque for bolt M14-8.8-14 daNm)
$\nabla \nabla$ - Place for attachment

C: Brake release Port - G1/4, 9 mm depth
D, T : Drainage tap - $\mathrm{G} 1 / 4,9 \mathrm{~mm}$ depth

HYDRAULIC DISC BRAKES
FOR FLANGE ATTACHMENT TO OTS AND OTV HYDRAULIC MOTORS SPECIFICATION DATA

Description ELB/314(315) LBV/314(315)		21	29	43	65	85	110	130
*Static Torque	[daNm]	18-23	28-33	42-46	61-70	83-92	108-118	126-136
Opening Pressure [bar]	min	4-5	6-7	9-10	13-15	18-20	23-25	27-29
	max	300						
Min, oil quantity for brake releasing $\left[\mathrm{cm}^{3}\right]$		8-9						
Oil quantity	$\left[\mathrm{cm}^{3}\right]$	150-300						
Max. Pressure in drain space [bar]		5						
Weight for .../314(315) [kg]		24(25)						

*Static torque is obtained at working pressure - 0 bar.

LOAD CURVE

ELB(LBV) ... 1314

OUTPUT SHAFT EXTENSIONS

C - 40 straight, Parallel key A $12 \times 8 \times 70$ DIN 6885 Max. Torque 132,8 daNm

SH - $\quad 11 / 2^{\prime \prime}$ splined 17T, DP12/24 ANSI B92.1-1976 Max. Torque $132,8 \mathrm{daNm}$

CO - $\boxed{\text { I }}{ }^{1 / 2^{\prime \prime}}$ straight, Parallel key $3 / 3^{\prime \prime} \times 3 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$ BS 46 Max. Torque 132,8 daNm

K-tapered 7: 10, Parallel key B $12 \times 8 \times 28$ DIN 6885 Max. Torque 210,7 daNm

ORDER CODE

1		2		3	4		6
	l		-				

Pos. 1 - Type
ELB - Euro Disc Brake
LBV - Disc Brake for very short motor V-OTV

Pos 2 - Design code

314 - for OTS and OTV Motors
315 - for OTS and OTV Motors (Wheel Mount)
Pos. 3 - Static Torque code (See Specification data)
$21,29,43,63,65,85,110,130$

Pos. 4- Output Shaft Extensions*

C	85
CO	- $\varnothing 11 / 2$ " straight, Parallel key ${ }^{3 / 8}{ }^{\prime \prime} x^{3 / 8}{ }^{\prime \prime} \times 2{ }^{1 / 4}{ }^{\prime \prime}$ BS46
SH	$1 / 2^{\prime \prime}$ splined 17T, ANSI B92.1-1976
K	tapere

Pos. 5 - Option (Paint) **

omit - no Paint P - Painted	
PC	- Corrosion Protected Paint

Pos. 6 - Design Series
omit - Factory specified

NOTES:

* The permissible output toruqe for shafts must be not exceeded!
* The color is by customer's request.

The Disc Brakes are mangano-phosphatized as standard.

INTEGRATED BRAKE-MOTOR UNIT SV, TV SERIES

INTRODUCTION

Our brakes are intended for hydraulic drive of operating systems, where the block and the release of the drive must be by means of hydraulic energy. The system has small overall dimensions and minimum weight. In the package are combined efficient hydraulic power of hydromotors type OS or OT with a reliable integral hydraulic disc brake type ELB and a valve block type KPBR.

The brake torque at the spring applied, hydraulically released brake reaches $14500 \mathrm{in}-\mathrm{lb}$ [160daNm].

Typical applications include wheel drives, conveyors , rotators, positioners, winches, swing drives and dooropeners.

The Meta brakes are intended to operate as static or parking brakes. System circuitry must be designet to bring the load to a stop before applying the brake.

SPECIFICATION DATA

Type		SV500B	TV500B
Displacement, in. ${ }^{3} \mathrm{rev}$. [cm. ${ }^{\text {3/ } / \mathrm{rev}, \text {] }}$		29 [475,3]	29 [475]
Max. Speed,	Cont.	16	84
RPM	\|nt."	25	115
Max. Torque, in-lb [daNm]	Cont.	7260 [82]	10000 [114]
	Int."	8420 [95]	12000 [135]
Max. Output, HP [kW]	Cont.	1.3 [0,9]	11 [8,2]
	\|nt.*	3.3 [2,4]	17 [12,5]
Max. Pressure Drop, PSI [bar]	Cont.	1800 [125]	2500 [170]
	\|nt,"	2100 [145]	2900 [200]
Max. Oil Flow, GPM [lpm]	Cont.	2 [8]	10,5 [40]
	Int.**	3 [12]	14,5 [55]
Max. Return Pressure without Drain Line or Max. Pressure in Drain Line, PSI [bar]		1450 [100]	1088 [75]
Min. Starting Torque, in-lb [daNm]	At max press drop Cont.	6400 [72]	8400 [95]
	At max. press. drop Int.*	6650 [75]	9940 [112]
Min. Speed**, RPM		5	5
Static Torque for the Brake***, in-lb [daNm]		14515 [164]	14515 [164]
Release Pressure $\pm 10 \%$, PSI [bar]	initial	$363.406[25 . .28]$	363. 406 [25..28]
	full	449.6 [31]	449.6 [31]
Max. Steering Pressure, PSI [bar]		3553 [245]	3553 [245]
Max. Pressure in Drain Space for the Brake, PSI [bar]		$7[0,5]$	$7[0,5]$
Pilot Ratio for the Valve		4,25:1	4,25:1

[^10]
OUTLINE DIMENSIONS REFERENCE OF SV500B

A, B: 7/16-20 UNF
D : $1 / 4-18$ NPTF

OUTLINE DIMENSIONS REFERENCE OF TV500B

A,B:7/8-14 UNF
D : 1/4-18 NPTF
E: G1/4
\square © $\frac{\mathrm{in} .}{[\mathrm{mm}]}$

SHAFT EXTENSIONS

C. $2^{\prime \prime}[50,8]$ Straight key $1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 7 \quad 1 / 2^{\prime \prime}$

17T 5/7 PITCH Splined

D® $\frac{\mathrm{in} .}{[\mathrm{mm}]}$
∇ - Motor Mounting Surface

ORDER CODE

Pos. 1 - Type	Pos.6--Valve
5 - motor OS	Pos. 7- Option (Paint)**
T - motor OT	omit - no Paint
Pos.2-Displacement code	P - Painted
Pos.3-Brake	PC - Corrosion Protected Paint
Pos.4.- Type of a Brake	Pos. 8 - Design Series
Pos.5-Shaft Extensions	omit - Factory specified
omit - 17T 5/7 PITCHSplined $C^{*}-2^{n}[50,8]$ Straight key	

NOTES:

* For code name see scheme on page 6.
**Color at customer's request.
The motor/brakes are mangano-phosphatized as standard.

INTEGRATED BRAKE-MOTOR UNIT PW SERIES

INTRODUCTION

This Brake-Motor Unit is intended for hydraulic drive of operating systems, where the block and the release of the drive must be by means of hydraulic energy. The system has small overall dimensions and minimum weight.

Typical applications include wheel drives, conveyors, rotators, positioners, winches, swing drives and door openers.

These Brake Motor are intended to operate as static or parking brakes. System circuitry must be designetto bring the load to a stop before applying the brake.

Brake-Motor Unit Type PW

SPECIFICATION DATA

	Type	PW 160	PW 400
Displacement, [cm. $\left.{ }^{3} / \mathrm{rev}.\right]$		158,4	396
Max. Speed,	Cont.	300	150
RPM	Int.*	370	190
Max. Torque, [daNm]	Cont.	26,4	28,5
	Int.*	37,8	36,0
Max. Pressure Drop, [bar]	Cont.	120	55
	Int.*	175	70
Max. Oil Flow, [lpm]	Cont.	60	60
	Int.*	75	75
Static Torque, [daNm]		41... 45	41... 45
Release Pressure, [bar]		24... 26	24... 26
Max. Inlet pressure, [bar]	Cont.	140	140
	Int.*	175	175
Drain line, [bar]	O- 100 RPM	75	75
	100-300 RPM	30	30
L, mm		236	268
$L_{1}, \mathrm{~mm}$		21,33	53,33

Intermittent operation: the permissible values may occur for max. 10\% of every minute.

SHAFT EXTENSIONS

C- $\sigma 25$ straight, Parallel key A8x7x32 DIN 6885
Max. Torque 34 daNm

OUTLINE DIMENSIONS REFERENCE OF PW

Standard Rotation

Viewed from Shaft End
Port A Pressurized -CW
PortB Pressurized-CCW
$P_{(A, B]:}: 2 \times G 1 / 2-15 \mathrm{~mm}$ depth
T: G1/4-12 mm depth (plugged)

ORDER CODE

Pos. 7 - Type

\square - motor OP

Pos.2-Displacement code

160	$-158,4\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$
400	$-396,0\left[\mathrm{~cm}^{3} / \mathrm{rev}\right]$

Pos. 3 - Option (Paint) ${ }^{*}$
omit - no Paint

\mathbf{P}	- Painted
PC	- Corrosion Protected Paint

Pos. 4 - Design Series
omit - Factory specified

NOTES:

* Color at customer's request.

The brake motor is mangano-phosphatized as standard.

INTEGRATED BRAKE-MOTOR UNIT TW SERIES

INTRODUCTION

The Brake-Motor Units are intended for hydraulic drive of operating systems, where the block and the release of the drive must be by means of hydraulic energy. The system has small overall dimensions and minimum weight. In the package are combined efficient hydraulic power of hydromotors type OT 500 with a reliable integral hydraulic disc brake type ELB.

Typical applications include wheel drives, conveyors, rotators, positioners, winches, swing drives and door openers.

The Meta Brake-Motor Units are intended to operate as static or parking brakes.
 System circuitry must be designed to bring the load to a stop before applying the brake.

SPECIFICATION DATA

Type		TW500B314
Displacement, [cm. ${ }^{\left.\frac{3}{2} \mathrm{rev} .\right]}$		524
Max. Speed, RPM		200
Max. Torque,	Cont.	122
[daNm]	Int.*	137
Max. Output, [kW]		28
Max. Pressure Drop, [bar]	Cont.	160
	Int,*	180
Max. Oil Flow, [lpm]		125
Max. Return Pressure without Drain Line or Max. Pressure in Drain Line, [bar]		5
Min. Speed**, RPM		5
Static Torque for the Brake**, [daNm]		142
Release Pressure $\pm 10 \%$, [bar]		24... 29
Max. Steering Pressure, [bar]		300

[^11]OUTLINE DIMENSIONS REFERENCE OF TW 500-314 ...

C- 940 straight, Parallel key A1 $2 \times 8 \times 70$ DIN 6885 Max. Torque $132,8 \mathrm{daNm}$

∇ - Motor Mounting Surface

K-tapered 1:10, Parallel key B1 $2 \times 8 \times 28$ DIN 6885 Max. Torque 210,7 daNm

ORDER CODE

1			2	3	4	5
TW	500	-	314			

Pos. 1 - Displacement code

Pos.2- Type of a Brake (ELB 314)

Pos. 3 - Shaft Extensions

\square - $\varnothing 40$ straight, Parallel key A12×8×70 DIN 6885 tapered 1:10, Parallel key B12x8×28 DIN 6885
Pos. 4-Option (Paint) ${ }^{\star}$

omit
\mathbf{P}
$\mathbf{P C}$

[^12]
NOTES:

* Color at customer's request.

The brake-motor unit is mangano-phosphatized as standard.
Many thanks to the production company $M+S$ for the use of Technical Drawing

HYDRAULIC VALVES FOR HYDRAULIC MOTORS

INDEX
> OVERCENTER VALVES VALVES-01

- VALVE TYPE VAKR VALVES-02
- VALVE TYPE VAKS VALVES-03
- VALVE TYPE VAKT VALVES-04
SWITCH VALVES VALVES-05
- VALVE TYPE VAAR1 VALVES-05
- VALVE TYPE VAAS1 VALVES-05
> CROSSOVER RELIEF VALVES VALVES-06
- VALVE TYPE VABR VALVES-07
- VALVE TYPE VABS VALVES-08
- VALVE TYPE VABT VALVES-09

VALVES FOR HYDRAULIC MOTORS

OVERCENTER VALVES WITH BRAKE CONTROL

Single Overcenter Valves with Brake Control

Dual Overcenter Valves with Brake Control

CONTENTS

Valves for OP and OR type VAKR ... Valves-02
Valves for OS type VAKS
Valves-03
Valves for OT type VAKT Valves-04
Switch valves type VAAR1 and VAAS1. Valves-05
Order Code
Valves-10

SPECIFICATION DATA

Parameters	Type					
	VAKR1	VAKS1	VAKR2	VAKS2	VAKT1	VAKT2
Flow Rate, 1/min	60					100
Rated Pressure, bar	250				250	
Pilot Ratio	$4,25: 1$				$4,25: 1$	
Weight, kg	3,300	3,340	3,350	3,390	5,400	5,800

PRESSURELOSSES

VAKT1(2)

VALVES FOR OP, OR HYDRAULIC MOTORS

SINGLE VALVE VAKR1.. - Series 2

DUAL VALVE VAKR2 ... - Series 2

$\mathbf{P}_{(\mathrm{A}, \mathrm{B})}$: G1/2 (M22x1,5), 17 mm depth
C: G1/4 (M14×1,5), 14 mm depth
Note : VAKR Blocks are installed directly on OP and OR Motors with four bolts M8x50-8.8 DIN 912. Tightening torque 2^{+05} daNm.

VALVES FOR OS HYDRAULIC MOTORS

SINGLE VALVE VAKS1 ... - Series 2

$\mathbf{P}_{(\mathrm{A}, \mathrm{B})}: \mathrm{G} 1 / 2(\mathrm{M} 22 \times 1,5), 17 \mathrm{~mm}$ depth
C : G1/4 (M14×1,5), 14 mm depth
DUAL VALVE VAKS2... - Series 2

$\mathbf{P}(\mathrm{A}, \mathrm{B}): \mathrm{G} 1 / 2(\mathrm{M} 22 \times 1,5), 17 \mathrm{~mm}$ depth
C : G1/4 (M14x1,5), 14 mm depth
Note: VAKS Blocks are installed directly on OS Motors with two bolts M10x50-8.8 DIN 912.
Tightening torque $4,5^{+0.5} \mathrm{daNm}$.

VALVES FOR OT HYDRAULIC MOTORS

$P_{A, B]}: G 3 / 4$ (M27x2), 17 mm depth
C : G1/4 (M14x1,5), 14 mm depth

> DUAL VALVE VAKT2 ...

$P_{\langle A, B]}: G 3 / 4(M 27 \times 2), 17 \mathrm{~mm}$ depth
C : G1/4 (M14×1,5), 14 mm depth
Note :VAKT Blocks are installed directly on OT Motors with four bolts M10x55-8.8 DIN 912. Tightening torque $4,5^{+05} \mathrm{daNm}$.

SWITCH VALVES

SPECIFICATION DATA

Parameters	Type	
	VAAR1	VAAS1
Flow Rate, I/min	60	
Rated Pressure, bar	250	
Weight, kg	0,850	0,670

VALVE FOR OP, OR HYDRAULIC MOTORS VAAR1

VALVE FOR OS HYDRAULIC MOTORS VAAS1

$\mathbf{P}_{(\mathrm{A}, \mathrm{B})}: \mathrm{G} 1 / 2(\mathrm{M} 22 \times 1,5), 17 \mathrm{~mm}$ depth
C: G1/4 (M14x1,5), 14 mm depth
Note : \quad VAAR1 Blocks are installed directly on OP and OR Motors with four bolts M8x40-8.8 DIN 912. Tightening torque 2^{+05} daNm.
VAAS1 Blocks are installed directly on OS Motors with two bolts M10x40-8.8 DIN 912.
Tightening torque $4,5^{+0.5} \mathrm{daNm}$

CROSSOVER RELIEF VALVES

CONTENTS

$$
\begin{aligned}
& \text { Valves for OP and OR type VABR1(2) Valves-07 } \\
& \text { Valves for OS type VABS1(2) Valves-08 } \\
& \text { Valves for OT type VABT1(2) Valves-09 } \\
& \text { Order code................................. Valves-10 }
\end{aligned}
$$

SPECIFICATION DATA

Parameters	Type						
	VABR1 (X)	VABS1 (X)	VABR2 (X)	VABS2 (X)	VABT1	VABT2	
	60					120	
Rated Pressure, bar	30 to $100 ; 80$ to 210				80 to 210		
Weight, kg	1,32	1,58	1,44	1,70	5,10	5,54	

Rated Pressure $30 \div 100$ bar

Rated Pressure $80 \div 210$ bar

DUAL VALVE VABR2

SINGLE VALVES VABR1

$\mathrm{P}_{\left(\mathrm{A}_{\tau} \mathrm{B}\right)}: \mathrm{G} 1 / 2(\mathrm{M} 22 \times 1,5), 15 \mathrm{~mm}$ depth

SINGLE VALVES VABR1X

$\mathbf{P}_{(A, B)}: G 1 / 2(\mathrm{M} 22 \times 1,5), 17 \mathrm{~mm}$ depth

Note:-VABR2(X) (VABR1(X)) Blocks are installed directly on OP and OR Motors with four bolts M8x40-8.8 DIN 912. Tightening torque $2^{+0 s}$ daNm.

Note:- $\operatorname{VABS2}(\mathrm{X})$ (VABS1(X)) Blocks are installed directly on OS Motors with two bolts M10x40-8.8 DIN 912. Tightening torque $4,5^{+05}$ daNm.

VALVE FOR OT HYDRAULIC MOTORS

DUAL VALVE VABT2

SINGLE VALVE VABT1

$\mathbf{P}_{(A, B)}: G 3 / 4 \quad(M 27 x 2), 20 \mathrm{~mm}$ depth

Note :VABT1 (VABT2) Blocks are installed directly on OT Motors with four bolts M10x70-8.8 DIN 912. Tightening torque $4,5^{+05}$ daNm.

ORDER CODE - OVERCENTER VALVES WITH BRAKE CONTROL

K - with overcenter valve (s)
A - Switch valve
Pos.2-Housing Type
R - Valve block for OP and OR Motors
\mathbf{S} - Valve block for OS Motors
T* - Valve block for OT Motors
Pos. 3 - Rated Pressure, bar
250
Pos. 4 - Pilot Ratio ${ }^{*}$
1 -4,25: 1

Pos. 5 . Number of Valves*
2 -Two Valves
1 -One Valve
Pos. 6 - Ports
omit - BSPP (ISO 228)
M - Metric (ISO 262)
Pos. 7 - Option (Paint) ${ }^{\text {t }}$
omit - no Paint

| \mathbf{P} |
| :--- | - Painted

PC - Corrosion Protected Paint

Pos, 8 - Design Series

omit - Factory specified

NOTES:

* Useful for K overcenter valve type only.
** The color is by customer's request.

ORDER CODE-CROSSOVER RELIEF VALVES

2
1

Two Valves
One Valves
Pos. 2 - Housing Type

\mathbf{R}
\mathbf{S}
\mathbf{T}

- Valve block for OP and OR Motors

T

- Valve block for OS Motors
- Valve block for OT Motors

Pos.3-Housing Design code
omit - Model 1
H^{*}
Model 2
Pos. 4 - Max. pressure range, bar

100	$-30 \div 100$ [bar]
210	$-80 \div 210$ [bar]

NOTES:

* Useful for types \mathbf{R} and \mathbf{S} only.
** The color is by customer's request.

Pos. 5 -Ports

omit - BSPP (ISO 228)
M - Metric (ISO 262)
Pos. 6 - Oplion (Paint) **
omit - no Paint

\mathbf{P}	- Painted
PC	- Corrosion Protected Paint

Pos. 7 - Design Series
omit - Factory specified

[^0]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.
 ${ }^{* *}$ Peak load: the permissible values may occur for max. 1% of every minute.
 *** For speeds of 30 RPM or lower, consult factory or your regional manager.

 1. Intermittent speed and intermittent pressure drop must not occur simultaneously.
 2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
 3. Recommend using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4).

 If using synthetic fluids consult the factory for alternative seal materials.
 4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperature $50^{\circ} \mathrm{C}$.
 5. Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
 6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for $15-30 \mathrm{~min}$.

[^1]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.
 ** Peak load: the permissible values may occur for max. 1% of every minute.
 *** For speeds of 10 RPM or lower, consult factory or your regional manager.

 1. Intermittent speed and intermittent pressure drop must not occur simultaneously.
 2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
 3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials.
 4. Recommen ded minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
 5. Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
 6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.
[^2]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.
 ** Peak load: the permissible values may occur for max. 1% of every minute.
 *** For speeds of 10 RPM or lower, consult factory or your regional manager.

 1. Intermittent speed and intermittent pressure drop must not occur simultaneously.
 2. Recommended filtration is per ISO cleanliness code 20/16. A nominal filtration of 25 micron or better.
 3. Recommended using a premium quality, anti-wear type mineral based hydraulic oil HLP(DIN51524) or HM (ISO 6743/4). If using synthetic fluids consult the factory for alternative seal materials.
 4. Recommended minimum oil viscosity $13 \mathrm{~mm}^{2} / \mathrm{s}$ at operating temperatures.
 5. Recommended maximum system operating temperature is $82^{\circ} \mathrm{C}$.
 6. To assure optimum motor life fill with fluid prior to loading and run at moderate load and speed for 10-15 minutes.
[^3]: ∇ - Motor Mounting Surface

[^4]: Reverse Rotation
 Viewed from Shaft End Port A Pressurized-CCW Port B Pressurized - CW

[^5]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.

[^6]: * The width of the gerolor is 3 mm greater than $L_{\text {. }}$.
 ** OSZ(E) have the same dimension as type OSS(E)

[^7]: * The width of the gerolor is $3,5 \mathrm{~mm}$ greater than L_{1}.

[^8]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.

[^9]: * The width of the gerolor is $3,5 \mathrm{~mm}$ greater than L_{1}.

[^10]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.
 ** For speeds of 5 RPM lower than given, consult factory or your regional manager.
 ${ }^{* * *}$ Static torque is obtained at working pressure - 0 PSI [0 bar].

[^11]: * Intermittent operation: the permissible values may occur for max. 10% of every minute.
 ** Static torque is obtained at working pressure - 0 PSI [0 bar],

[^12]: Pos. 5 - Design Series
 omit - Factory specified

